
1. INTRODUCTION

EMD-based time-frequency analysis, called Hilbert-Huang
Transform (HHT) [2], is only one of many applications
made possible by EMD. The results and ideas in time do-
main applications using EMD apply to two-dimensional
signals, such as images, as well. EMD decomposes the
spatial frequency components into a set of IMFs where the
highest spatial frequency component of each spatial posi-
tion is in the first IMF and the second highest spatial fre-
quency component of each spatial position is in the second
IMF, etc. An IMF is defined as a function in which the
number of extrema points and the number of zero cross-
ings are the same or differ by one [2]. In the two-dimen-
sional case this demand is relaxed. The upper and lower
envelope of the IMF are symmetric with respect to the lo-
cal mean, which is used to define the IMF instead of the
number of extrema points and zero crossings. In two di-
mensions there are many possibilities to define extrema,
each one yielding a different decomposition. In this work
we simply extract the extrema points by comparing the
candidate data point with its nearest 8-connected neigh-

bours. Clearly, more sophisticated methods exist, but the
extrema points defined by an 8-connected neighbourhood
serves the purpose for EMD at this stage, with further im-
provement being possible. The extension of the EMD to
two dimensions relies on proper two-dimensional spline
interpolation of the scattered extrema points. We use the
thin-plate smoothing spline interpolation [1] for this imple-
mentation of two-dimensional EMD. This method gives a
surface with continuous second derivative everywhere and
turns out to successfully decompose an image into its IMFs
and a smooth residue with no or only a few extrema points
[3]. This paper starts with a review of the sifting process
used in the EMD in Section 2, and a review of the variable
sampling in Section 3. In Section 4 these methods are used
in an image coder, and results are presented in Section 5. 

2. SIFTING FOR THE TWO-DIMENSIONAL IMF

To find the first IMF, start with the image itself as input
signal . The first index is the IMF
number, l=1,..,L, and the second index is the iteration
number, k=1,..,K, in the sifting process. m and n represent
the two spatial dimensions. To find the next IMF, use the
residue corresponding to the previously found IMF as in-
put signal .

The sifting process to find the IMFs of a signal x(m,n),
comprises the following steps:

(1) Find the positions and amplitudes of all local
maxima, and find the positions and amplitudes of all local
minima in the input signal.

(2) Create the upper envelope by spline interpolation of
the local maxima and the lower envelope by spline interpo-
lation of the local minima. Denote the envelopes 
and  respectively.

(3) For each position (m,n), calculate the mean of the
upper envelope and the lower envelope.

(1)

The signal is referred to as the envelope
mean.

(4) Subtract the envelope mean signal from the input
signal

COMPRESSION BY IMAGE EMPIRICAL MODE DECOMPOSITION

Anna Linderhed

Swedish Defence Research Agency, Department of IR Systems, Division of Sensor Technology, Linköping, Sweden
Image Coding Group, Department of Electrical Engineering, Linköpings Universitet, Sweden

anna.linderhed@foi.se

ABSTRACT

Empirical Mode Decomposition (EMD) in two dimen-
sions provides a tool for image processing by its spe-
cial ability to locally separate spatial frequencies. The
tendency is that the Intrinsic Mode Functions (IMFs)
other than the first are low frequency images. Variable
sampling of the EMD is used for image compression.
This is done blockwise using the non-uniformly locat-
ed extrema points of the IMF to steer the uniform sam-
pling rate of the block. The variable sampling process
results in a number of samples for each block. These
can be squeezed into blocks of smaller size and DCT
coded. The DCT components are then quantized and
thresholded, leaving us with even fewer components to
represent the block. The coding method presented in
this paper is a new approach to image compression that
opens doors for future applications.
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(2)
This is one iteration of the sifting process. The next step

is to check if the signal  from step 4 is an IMF or
not. The process stops when the envelope mean signal is
close enough to zero as proposed in [5].

(3)
The value of ε in the stop criterion affects the EMD in

such a way that if it is not small enough there will not be a
sufficient number of IMFs to separate all intrinsic modes
in the signal. On the other side, if the number ε is too small
the iterations will take long time.

Forcing the envelope mean to zero will give us the
wanted symmetry of the envelope and the correct relation
between the number of zero crossings and the number of
extremes that define the IMF. This way we will find the
IMF without actually having to check for symmetric enve-
lopes. 

(5) Check if the mean signal is close enough to zero,
based upon the stop criterion. If not, repeat the process
from step 1 with the resulting signal from step 4 as the
input signal a sufficient number of times.

When the stop criterion is met the IMF  is
defined as the last result of (4).

(4)
After the IMF is found, define the residue  as

(5)
(6) The next IMF is found by starting over from step 1,

now with the residue as the input signal.
(6)

Steps (1) to (6) can be repeated for all the subsequent
. The EMD is completed when the residue, ideally, does

not contain any extrema points. The signal can be
expressed as the sum of IMFs and the last residue

(7)

The Lenna image, shown in Figure 1, is decomposed
with the EMD method described above. The image's four
IMFs and their corresponding residues are shown in Figure
2. The last residue has only a very few extrema points.

3. VARIABLE SAMPLING OF OVERLAPPING 
BLOCKS

EMD is a truly empirical method, not based on the Fourier
frequency approach but related to the locations of extrema
points and zero crossings. Based on this we use the con-

cept of empiquency [4], short for empirical mode frequen-
cy, instead of a traditional Fourier-based frequency
measure to describe the signal oscillations. The special
property of the IMF that the empiquency varies is used to
control the variable sampling of the EMD. Areas with
many extrema points have high empiquency, while areas
with a few or no extrema points have low empiquency. The
IMFs are smoother than the image itself; only the first IMF
holds the nonsmooth parts of the image. This means that it
should be possible to subsample the IMFs. Due to the dif-
ferent empiquencies in the different parts of the IMF, the
subsampling can be different in different parts of the IMF.
The significant (with respect to a defined zero zone) ex-
trema points define the maximum empiquency in the IMF
[3]. Maximum empiquency is found by examining the
space between the significant extrema points. As suggest-
ed in [4] we treat the IMF blockwise. This way the sam-
pling rate for each block can be defined according to its
empiquency content. The high-empiquency blocks that
cannot be subsampled are not modified. The remaining
ones are subsampled. 

In the implementation of the blocking process we
choose to use overlapping blocks of size 7x7 pixels, details
can be found in [3]. The purpose of the overlap is to mini-
mize the artifacts from the blocking and to further reduce
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Figure 1. The Lenna image at 128x128 pixel size.
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Figure 2. a) First IMF, b) first residue, c) second IMF, d) 
second residue, e) third IMF, f) third residue, g) fourth 

IMF, h) fourth residue.
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the number of the samples used to represent the IMF. The
size of the block is chosen so that the corners of the block
are always represented, regardless of the chosen sampling
rate. The sampling pattern within a block consists of every
pixel, every second pixel, every third pixel, and every sixth
pixel in both directions, to represent 1/1, 1/4, 1/9, and 1/36
of the pixels, respectively. The overlapping pixels in two
neighbouring blocks will be the same, but used several
times. This will ensure that the concatenated blocks have
the same values at the edge pixels. For the reconstruction
the uniformly sampled points of the block are connected
by a surface created by the use of an interpolating cubic
spline extended to two dimensions. 

4. CODING OF THE EMD USING DCT OF THE 
VARIABLE SAMPLED BLOCKS (VSDCTEMD)

This image coder use the basic concept of the EMD for the
decomposition of the image and apply the variable sam-
pling and DCT coder on the IMFs and residue. A similar
approach is used in [6] but with a wavelet coder instead of
a DCT coder. Each IMF is divided into overlapping blocks.
The maximum empiquency in the block determines the
sampling rate for the subsampling of the block. The sam-
ples are represented by one sample alone or 6x6, 3x3, or
2x2 blocks of samples. These are DCT coded and the com-
ponents are quantized and thresholded before a two-bit
block header is added. The resulting component stream is
Huffman coded or fixlength coded. 

Reconstruction is done by reading the two-bit header
which indicates the sampling rate used. With this informa-
tion the components achieved from the inverse DCT trans-
form of the stream can be placed in their proper place in
the 7x7 pixel block. The stream only contains samples for
the 6x6 block, the missing samples are found in the recon-
structed neighbouring blocks. Since the missing samples
are located in the rightmost column and the lowest row of

the block, the reconstruction starts with the block in the
lower right corner working row-wise through the blocks.
For the blocks with no neighbours holding missing sam-
ples dummy samples are used. The 7x7 blocks of samples
are interpolated and the non-overlapping 6x6 part of the
reconstructed block is used to generate the output IMF.
The image is then reconstructed by the adding of recon-
structed IMFs and the reconstructed last residue.

We have found [3][5][6] that the first IMF is almost as
hard to compress as the image itself while the rest of the
IMFs and all the residues are smooth and can be effec-
tively represented by only a small part of a full size DCT.
In a slightly modified version of the coder presented here
we only decompose the image into one IMF and one resi-
due. We use the VSDCTEMD on the first IMF and thresh-
old coding of the full size DCT on the first residue. 

5. RESULTS

The VSDCTEMD coder is tested on two different images,
Detail one and Detail two, using zero zones 1, 10, and 20.
The quantization varies from 256 levels down to 8 levels.
The DCT components are thresholded leaving only those
having a value larger than or equal to the threshold. The
threshold varies from 0.1% to 100% of the maximum val-
ue. Figure 3 and Figure 4, show the coding results for the
EMD of the test images, respectively. The coding method
gives good results for all IMFs and the residue. Even for
the difficult first IMF the result is over 30 dB for a bitrate
of 1 bpp. In Figure 5 example reconstructions of the imag-
es are presented along with the original image.  

Figure 3. VSDCTEMD Coding result of Detail two. Zero 
zone=1, 10, 20 quantization varies from 256 levels down to 8 

levels

Fixlength code
Huffman code

Figure 4. VSDCTEMD Coding results of Detail one. 
Zero zone=1, 10, 20 quantization varies from 256 levels 

down to 8 levels.

Fixlength code
Huffman code
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Although the coding result of each IMF and the residue
are satisfactory, the image reconstruction by the addition of
the reconstructed IMFs and reconstructed residue sum the
bitrates to large numbers. Detail one image reconstructs to
28.27 dB using 4.79 bpp and Detail two image reconstructs
to 30.76 dB using 3.56 bpp.

The result of the coding of the first IMF using VSD-
CTEMD and DCT threshold coding on the first residue is
shown in Figure 6. Two different reconstruction examples
for each image are presented in Figure 7. This way the sum
bitrate can be held low. The Detail one image reconstructs
to 30.09 dB using 1.00 bpp, or 29.23 dB using 0.79 bpp,
and the Detail two image reconstructs to 30.02 dB using
1.28 bpp, or 28.88 dB using 0.69 bpp. 

6. SUMMARY

The EMD in two dimensions provides a tool for image
processing. We show how an image can be decomposed
into a set of IMFs and a residue with a minimum of ex-
trema points. The tendency is that the IMFs other than the
first are low frequency images. This can be used for coding
by the DCT of the whole image. The variable sampling of
the EMD has been used for image compression, blockwise,
using the non-uniformly located extrema points of the IMF

to steer the uniform sampling rate of the block. The DCT
components from the variable sampling of each block are
quantized and thresholded, leaving us with even fewer
components to represent the block. The result from the full
VSDCTEMD is not impressive due to the addition of
many IMFs, while for the use of VSDCTEMD on only the
first IMF and a threshold coded full sized DCT on the first
residue we get at better result. These results are of the
same quality as the results presented in [6].
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Figure 5. VSDCTEMD. a) Detail one original, b) Detail one
image reconstructed to 28.27 dB using 4.79 bpp. c) Detail 

two original, d). Detail two image reconstructed to 30.76 dB
using 3.56 bpp.

a b
Figure 6. Result of combining the coding by 

VSDCTEMD in first IMF and DCT threshold coding on 
first residue, a) Detail one b) Detail two.

a b

c d
Figure 7. Result of coding by VSDCTEMD in first IMF 
and DCT threshold coding on first residue.a) Detail one 
1.00 bpp 30.09 dB, b)Detail one 0.79 bpp 29.23 dB, c) 
Detail two 1.28 bpp 30.02 dB, d) Detail two 0.69 bpp 

28.88 dB
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