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Abstract
This thesis addresses the problem of using wavelet packets and empirical mode decom-
position (EMD) for image compression. The wavelet packet basis selection algorithm is
studied through an extensive experimental survey of the generated decomposition trees.
We formulate the "triplet problem" for image compression as follows: How is the decom-
position tree related to the image content, filter set and cost function? Our aim is to find
an optimal basis for compression of images. Results are presented using test images from
the Brodatz texture set. We also present a method to analytically calculate the cost of split-
ting a node, for a given signal model and filter, without actually performing the split.  

A totally different approach to signal decomposition is the EMD. This is an adaptive
decomposition scheme with which any complicated signal is decomposed into its intrinsic
mode functions (IMF). The concept of EMD is extended to two dimensions to make it use-
ful for image processing. The EMD and the sifting process to generate the IMFs are de-
scribed. Different known and newly found difficulties with implementation of the method
in two dimensions are highlighted and solutions are proposed. The method of variable
sampling of the EMD, using overlapping blocks, is presented and the concept of em-
piquency is introduced to describe spatial frequency since the traditional Fourier-based
frequency concept is not applicable. 

Several ways to use EMD for image compression are examined and presented. The
two-dimensional extension of the EMD is original as well as its application for image
compression.
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Preface
I started my stay in the Image Coding Group with my master thesis work on three-dimen-
sional sound algorithms in an image coding project. This introduced me to the compres-
sion side of the image processing problem. Before that I only knew about traditional
image processing such as image analysis and restoration. 

I knew that if I could find a very good representation of the image, the compression
would be easy. This is the very core of image compression but I was not satisfied with the
way the algorithms at the time treated all images the same way. I wanted an adaptive rep-
resentation. 

In 1993 I attended a lecture by Professor Coifman and fell in love with the idea of
wavelet packets and best basis. This was brand new, not only to me. The following years
I spent with my babies, learning about image compression and wavelet theory, teaching
signal theory at the university and struggling with my main question that no one could
give me the answer to: Which one of all these possible best bases is the best for compres-
sion purposes? And why? Are wavelet packets the best way to represent the image for
compression? During this time several good wavelet image compression algorithms were
developed by others but the wavelet packets seemed to be of no good use. 

By 2000 I nearly gave up my work towards a PhD thesis and left the Image Coding
Group for a position at the Swedish Defence Research Agency. 

Then it happened again! I fell in love with an idea. 

In April 2001 Dr. Norden E. Huang presented his idea of Empirical Mode Decompo-
sition at a wavelet conference. This was what I had been trying to do with wavelet packets.
A totally signal adaptive decomposition. I had to expand the method to two dimensions
for the use on images and then find out how to use it for compression, if possible.

So what motivated the work in this thesis?

Love..........and Curiosity.......

Anna Linderhed
September 2004
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Chapter 1

Introduction

This chapter gives a short introduction to the underlying theories that form the basis for
the forthcoming chapters. It also includes the problem formulation and the outline of the
work discussed in the thesis. The scientific contribution is summarized in the last section
where possible applications are also discussed. 

The basis for this research is the problem of electronic communication of images
which includes storing of images and transmission over the Internet, telephone network
or television channel. The framework is the communication model by Shannon [77] as
viewed in Figure 1.1. This model shows how a message is communicated over a disturbed
channel. The message is coded in the transmitter, the source coding and the channel cod-
ing can be treated separately following [77]. The source coding block can be further de-
composed into its subblocks according to the scheme in Figure 1.10. In the first part of
this thesis the work is concentrated on the problem of efficient representation of the image
in order to make it easy for the source compression algorithms, while in the second part
of this thesis the search for an efficient representation is complemented with different
compression methods. We also restrict ourselves to work only with gray scale images.

Figure 1.1. The Shannon communication model.
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1.1  Properties of images
To be able to find an efficient representation of an image we have to understand the prop-
erties of images. An image can often be modelled as areas of texture, single or combined,
and separated by edges. Some theories treat the set of image signals as a random process
where the image is one realization of the random process, while others look upon the im-
age as a deterministic signal. In this section we look at different ways to describe an im-
age and its properties. Throughout this thesis we use the word image to denote the digital
picture. The image is regarded as a square integer array in which each element is denoted
a pixel. We ignore the digitizing process and assume all images we use are represented
with 8 bits per pixel before our treatment starts. Pixel values thus range from 0 (black) to
255 (white). 

1.1.1  Spatial frequency
Spatial frequency is a property that is often used for estimation of size and scale in images
[30]. The images in Figure 1.2 show patterns of different spatial frequency along the hor-
izontal direction. 

Figure 1.2. Patterns with different spatial frequency, a) low, b) medium, and c) high.

In a two-dimensional signal like an image the spatial frequency can have different di-
rections. A spatial frequency component is traditionally described by

(1.1)

which is a spatial pattern in which u and v are the spatial frequencies along the x- and y-
axes [74]. The pattern has a spatial period of  along a direction that has an
angle  with the x-axis.

Example 1.1. We analyse the spatial frequency in the horizontal direction of the image
in Figure 1.3 by visual inspection of one row of the image.

a b c

ej2π ux vy+( )

u2 v2+( ) 1 2⁄–

u v⁄( )atan
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Figure 1.3. Lenna 512x512 with row 450 marked in black.

Figure 1.4. Row 450 of Lenna 512X512.

The fast varying values in Figure 1.4, part a, indicate high spatial frequency in the feather
and the hair while the trend of slowly rising values in part b indicates the low spatial fre-
quency in the shoulder. Edges are indicated by a dramatic change of value as in c, d, e and
f in Figure 1.4.

1.1.2  Texture 
Textures are homogeneous patterns or spatial arrangements of pixels that regional inten-
sity or colour alone does not sufficiently describe. They are composed of a large number
of more or less ordered similar patterns, giving rise to a perception of homogeneity [30].
The three principal approaches to describe the texture of a region used in image process-
ing are statistical properties, structural properties, and spectral properties [29]. A texture
may consist of the structured and/or random placement of elements, but also may be with-
out fundamental sub-units. The properties that are important in the perception of visual
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texture are complex visual patterns composed of subpatterns that have characteristic
brightness, slopes, sizes, etc. The local subpattern properties give rise to the perceived
lightness, directionality, coarseness, etc., of the texture as a whole [74]. In this thesis a
pure texture image is characterized in that the whole image contains the same structure
or a repeated pattern that the human eye/brain system interprets as a homogenous area of
the same pattern all over the image.

1.1.3  Resonance
By spatial resonance we will mean the dominating repeated pattern, a periodic texture,
in the image. An example of a resonance image is the brickwall texture. The dominant
repeating structure is easily seen from the plot in Figure 1.6 of one row of the image in
Figure 1.5. 

Figure 1.5. The brickwall texture.

Figure 1.6. One row of the brickwall texture.

In Figure 1.4 we see one resonance in part a, the feather, and we see another resonance
in part b, the shoulder. 
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1.1.4  Stationarity
Let X be the collection of all possible images. Following Rosenfeld & Kak [74], such a
two-dimensional entity should be properly denoted random field corresponding to the
one-dimensional random process. However, most of the time we will treat the images as
one-dimensional vectors after a line scan in one of the directions. Alternatively we apply
our algorithms in one direction at a time in a separable manner [30]. Thereforee we will
use the notation image random process in this thesis. Any ensemble mean taken over the
whole ensemble for one part of the image can be expected to be the same as the ensemble
mean taken over the whole ensemble for another part of the image when the set includes
all types of images. Also the autocorrelation function is not dependent on absolute loca-
tion in the image thus and the process is wide sense stationary [22]. As a counter example
of a set of images that is non-stationary in this sense we consider the set of face images
used in video phone applications. Here all the images have a background and a face in the
centre of the picture, a nose in the middle of the face, and shoulders and neck attached to
the face. But in general we consider the images to be a weak sense stationary process and
we can also talk about the spectral representation of our process.

We will talk about deterministic non-stationarity when there are different resonances
in different parts of the image. In this sense a stationary image would be a pure texture
image, such as the images treated in Chapter 3. 

1.1.5  Spectral properties
Another way of describing the spatial frequency content of the image is to use the Fourier
transform [9]. This is essentially the same as decomposing the image into its sinusoidal
components. The frequency content of the process is contained in the spectral density
[22] of the signal, also called power spectrum [74,64]. This can be calculated by taking
the Fourier transform of the autocorrelation function [22] which describes the dependen-
cies between pixels. The power spectrum can also be estimated by the periodogram [64]
of the input signal.

When transforming the entire image we get no information on the location of the fre-
quencies, and there is rarely a single clear resonance. When we transform only a small
homogenous texture region of the image we get another result. This principle is used in
the JPEG coding [65] of an image where the transform is taken over small parts of the
image with the expectation that each part can be described by only a few frequency com-
ponents.

Example 1.2. Compare the periodogram of the Lenna image in Figure 1.7 with the per-
iodogram of the feather in her hat in Figure 1.8. The periodogram is taken over all the hor-
izontal lines in the image together. The overall image is dominated by the low frequency
components in the image while the high frequency components stands out when analys-
ing only a high frequency part of the image.
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Figure 1.7. Periodogram of Lenna.

Figure 1.8. A small part of the feather in Lenna’s hat and the periodogram of the same.

Example 1.3. The frequency content of the same part of the image can be different in
different directions. Taking the periodogram of the brickwall texture in both the horizon-
tal direction and the vertical direction shows the dominating low spatial frequency struc-
ture in one direction and the high spatial frequency resonance in the other direction, see
Figure 1.9.

Figure 1.9. Horizontal and vertical periodogram of the brickwall texture.

1.2  The coding chain
Source coding involves not only the transform itself but also quantization, followed by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

4



1.2 The coding chain

7

entropy coding. This is shown in Figure 1.10. If the signals to be encoded are realizations
of a Gaussian process the design is well known. The basis set of optimal linear transforms
for this signal is the Karhunen-Loeve (K-L) basis [40].

Figure 1.10. The coding chain.

1.2.1  Transform
The fast Fourier transform (FFT) algorithm [9] makes it possible to manipulate the image
in the frequency plane by transforming the image. The decorrelation property of a trans-
form is very important for compression efficiency. Compression is achieved when quan-
tization is applied to the transform components.

The transform can be seen as a way to change the statistics of the source, a change of
basis is a change of point of view. The transform  of a vector  is represented by a vector
multiplication by a transform matrix .

(1.2)

After manipulations of , such as quantization, the reconstructed vector is achieved by

(1.3)

if the inverse  exists.
A good decorrelating transform will remove linear dependencies from the data, thus

producing a set of components such that, when individually quantized and entropy coded,
the resulting symbol stream is reduced substantially, compared to applying the quantiza-
tion directly on the image data. 

The short time Fourier transform is the most widely used method for studying time
varying signals. It is well understood and for many signals and situations it gives a good
time-frequency structure, however, for certain situations it is not the best method. 

The discrete cosine transform (DCT) established itself before the wavelet revolution
and is one of the building blocks of the JPEG still image coding standard [65]. This trans-
form is very close to the Karhunen-Loeve Transform (KLT) which produces uncorrelated
transform coefficients of a Gaussian source. In the JPEG standard the two dimensional
DCT uses a set of 64 8x8 tap basis functions shown in Figure 1.11. The image is divided
into 8x8 pixel sized blocks and the transform components for each block found by corre-
lation with the basis functions. This representation of images relates to the short time Fou-
rier transform in that it analyses the image in fixed sized windows. Because the image is
segmented into 8x8 pixel blocks, a basis function of a given spatial frequency can only

transform
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represent partial phase of a spatial oscillation within the block. The segmentation also
gives rise to visible discontinuities between adjacent blocks, this is called the “blocking
artifacts”. For some applications in this thesis we use sizes other than the usual 8x8 block. 

Figure 1.11. The set of 64 DCT basis functions used in the JPEG standard, from [65].

1.2.2  Quantization and bit allocation
The image transform used in a coder is usually invertible. That is, the image can be re-
constructed from its transform coefficients. The quantization and thresholding stage
however introduces errors, but also reduces the bitrate needed to represent the image. In
this thesis uniform quantization is used except for some sections where SPIHT (see
section 2.2.3) is used.

We use the mean square error (MSE)

 (1.4)

as distortion measure. The signal-to-noise ratio for any signal is

(1.5)

For images represented with 8 bits per pixel (bpp) we use the peak-signal-to-noise ra-
tio measure (PSNR).

MSE 1
N---- xi x̂i–( )

2

i 1=

N

∑=

SNRdB 10 σ2 m2+
MSE------------------- 

 log=
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(1.6)

1.2.3  Entropy coding
In most of the wavelet work in this thesis the bitrate is estimated by the entropy of the
quantized components. However, in other parts of the thesis we will perform “real” cod-
ing using one of the following methods. 

Huffman coding 
The Huffman coder [18] assigns codewords to each component in relation to the proba-
bility of the value it holds. More probable values gets shorter codewords while rare values
get long codewords. This way the components can be represented more efficiently. 

Runlength coding
After quantization of the transform components many of them have the value zero. The
length of zero runs can be coded separately. The simplest way to code the runlengths is
to send a sequence of zeroes followed by a 1 (unary coding). 1 is coded as 01, 2 is coded
as 001, 9 is coded as 0000000001 etc. Sorting the runlengths and coding the most frequent
ones with the shortest codewords can give some improvement. 

Elias code 
Using Elias code [25] gives us an efficient way to assign codewords to the runlength val-
ues x. This code represents the integer x with its binary representation and a prefix telling
the length of the binary representation of x. There are different ways to generate the pre-
fix.

The simplest one is to use unary coding of the length of the binary representation giv-
ing codewords of length . 

Using Elias code to code the length of the binary representation as well gives a code
that maps the integer x to a codeword consisting of  bits followed by the bi-
nary value of x with the leading 1 deleted. The resulting codeword has length

. This gives shorter codewords for large values of
x. 

Coding of amplitude
For the coding of amplitude levels we will commonly use fixlength code of varying sizes.

PSNR 10
2552

1
N---- xi x̂i–( )

2

i 1=

N

∑

-----------------------------------
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1.3  Wavelet packet image coding
Image properties, filter and cost function make up a closely related triplet in selecting a
wavelet packet basis. Changing any of these three affects the compression performance.
Analysing the triplet problem is to understand why and how the wavelet packet basis is
affected by the choice of attributes image, decomposition filter and cost function. In this
thesis we analyse the triplet problem in a compression application. We use the expression
best basis for the basis found by the best basis search algorithm of Coifman & Wicker-
hauser [17]. This algorithm uses a bottom up search strategy and is stated to find a global
optimal basis. The expression wavelet packet basis is used for any non-redundant basis
extracted from the full wavelet packet tree. In this thesis we are concerned mainly with
the compression ratio achieved by the wavelet packet transform. We use texture images
in this work because we are specifically interested in efficient representation of the reso-
nance in the image.

Previous work used the fixed wavelet basis while discussing suitable filters, or the
wavelet packet basis with discussion of cost functions but mostly without considering fil-
ters and image properties. 

A triplet database consisting of coding results from 2295 different triplets has been
created using the best basis algorithm. This data is analysed and discussed with respect
to different images, cost functions, and filters. 

An important question is whether, and when, a wavelet packet basis is better than the
fixed wavelet basis. We will attempt to answer this question by combining the best filter
and cost function with a flexible wavelet packet coder described in Chapter 2.

We present a method to analytically calculate the expected wavelet packet basis, with
a top-down approach, for certain triplets using signal models to represent the image. 

1.4  Empirical mode decomposition
A totally different approach to signal decomposition was first presented by Huang et al.
[36]. Empirical mode decomposition (EMD) is an adaptive decomposition with which
any complicated signal can be decomposed into its intrinsic mode functions (IMF). The
Fourier spectral analysis as well as wavelet methods require the system to be linear and
the data must be strictly periodic or stationary. EMD is an analysis method that in many
aspects gives a better understanding of the physics behind the signals. Because of its abil-
ity to describe short time changes in frequencies that can not be resolved by Fourier spec-
tral analysis it can be used for non-linear and non-stationary time series analysis.

In the second part of the thesis we will investigate how to apply EMD to images and
image coding. Previous work often mentions the lack of a mathematical formalism to de-
scribe the EMD; the concept is truly empirical. In this work we keep the empirical ap-
proach as we extend the method to two-dimensional signals, such as images. We present
an EMD method that can decompose the image into a number of IMFs and a residue with
no, or only a few extrema points. This method makes it possible to use the EMD for im-
age processing.

Next we examine the use of EMD for image compression purposes. The set of IMFs
and the residue image is a very redundant way to represent an image. Our first goal is to
represent the image by its EMD with the same number of samples as the original image.
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Our second goal is to find an EMD-based image coder that can achieve reasonable com-
pression. The concept of empiquency, short for empirical mode frequency, is introduced
to describe the signal oscillations, since the traditional frequency concept is not applica-
ble in this work.

1.5  Overview of the thesis and 
summary of publications
This thesis consists of two main parts. The first part, Chapters 2 to 4, deals with wavelet
packet coding of images, an area where much research has already been done. However,
in this part we focus specifically on how the choice of filters and cost functions influences
the basis selection in relation to the images. The second part, Chapters 5 to 11, deals with
the idea of using empirical mode decomposition for signal compression. This is new, as
is applying EMD to images. Parts of the thesis work are included in the following reports: 

• J. Karlholm, M. Ulvklo, S. Nyberg, A. Lauberts, A. Linderhed, “A survey of meth-
ods for detection of extended ground targets in EO/IR imagery”. FOI 2003, 144
pp. Scientific report FOI-R--0892--SE, Linköping 

in which the author of this thesis contributed with a discussion on image compression of
sensor data.

• J. Karlholm, M. Ulvklo, J. Nygårds, M. Karlsson, S. Nyberg, M. Bengtsson, L.
Klasén, A. Linderhed, M. Elmqvist, “Target detection and tracking processing
chain: a survey of methods with special reference to EO/IR sequences”. FOA
2000, User report FOA-R--00-01767-408,616--SE, Linköping

in which the author of this thesis contributed with the wavelet packet representation of
texture. 

Chapter 2 deals with image coding, wavelet and wavelet packet methods, and presents
a survey of such image coding methods. The focus is on image compression methods that
have had major impact on the development of wavelet and wavelet packet image com-
pression.

In Chapter 3 the wavelet packet triplet problem is analysed to understand why and
how the wavelet packet basis is affected by the image, decomposition filter and cost func-
tion. 

This question arose early when different best bases occurred for the same image when
using different filters or cost functions. The problem is analysed by the author in:

• A. Linderhed, “Cost function and filter influence on wavelet packet decomposi-
tions of texture images”. Proceedings of SSAB symposium on image analysis,
SSAB’00, Halmstad, 7-8 March 2000, pp.5-8.

The exhaustive search of the combination of 17 images, 9 cost functions and 15 different
wavelet filters was presented in 

• A. Linderhed, “Wavelet packet decompositions of texture images- Cost function
and filter influence” Proceedings of the Internal Workshop for Information Theory
and Image Coding 2001, Report LiTH-ISY-R-2345, Linköping University, 2001,
pp. 49-73.
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In this thesis we draw some conclusions from this work that explain the different bas-
es and guides to a choice of filter and cost function. With this in mind, one of the wavelet
packet coders from Chapter 2 is tested on different images. The test verifies the hypoth-
esis that for pure texture images a wavelet packet basis adapted to the actual image is
better than a general wavelet basis. 

The chapter continues with an analytic calculation of the expected wavelet packet ba-
sis based on two simple signal models, filters and cost functions. Part of this work was
presented in: 

• A. Linderhed, “Wavelet packet decompositions of texture images: analysis of cost
functions, filter influences, and image models”. SPIE Proceedings Vol. 4738,
Wavelet and Independent Component Analysis Applications IX, Orlando, FL
2002, April 2002, pp.9-20.

In this thesis the work is extended to show that the best basis can be found, for a se-
lection of triplets, with a top down approach using calculations based on image statistics. 

Chapter 4 presents a discussion of the first part of the thesis. 
With Chapter 5 the second part of this thesis starts. This chapter focuses on empirical

mode decomposition, and starts with a description of the original work and its purpose as
we understand it. The EMD and the sifting process for the IMF are described. The EMD
is extended to two-dimensional signals. This was first presented in: 

• A. Linderhed, “2D empirical mode decompositions in the spirit of image compres-
sion”, SPIE Proceedings Vol. 4738, Wavelet and Independent Component Analy-
sis Applications IX, Orlando, FL 2002, April 2002, pp.1-8.

In this chapter different known and newly found difficulties with implementation of
the EMD method in two dimensions are highlighted and solutions are proposed. We also
introduce the concept of empiquency, published in [53], to describe the spatial frequency
in the image since traditional the Fourier-based frequency is not applicable in this work. 

In Chapter 6 we present different attempts to compress the EMD. The results from
this work are only published in this thesis. 

The EMD is a redundant representation of an image. To overcome this a method of
variable sampling of the EMD, using overlapping blocks, is proposed in Chapter 7. This
is published in: 

• A. Linderhed, “Variable Sampling of the Empirical Mode Decomposition of Two-
Dimensional Signals”, International Journal of Wavelets, Multiresolution and
Information Processing, special issue on Sampling Problems Related to Wavelet
Theory and Time-Frequency Analysis, forthcoming.

In Chapters 8 to 10 we present different image coders using this approach. A variant
of these is presented in: 

• A. Linderhed, “Image compression based on empirical mode decomposition”.
Proceedings of SSBA symposium on image analysis, SSBA’04, Halmstad, 11-12
March 2004, p. 110-113.

The rest of the image coding methods in this chapter are only published in this thesis
so far, although several papers are in preparation.

Chapter 11 presents a discussion of the EMD work and how the result relates to the
work of others. This chapter also present some open problems in this area. 
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1.6  Scientific contributions 
The contributions of this thesis are:
• Survey of image coding methods using wavelet and wavelet packet techniques, 

• Analysis of the triplet problem, 

• Discussion of filters suitable for wavelet packet decomposition from an experi-
mental and theoretical view,

• Analytic calculation wavelet packet basis desicion rule,

• Extension of EMD to two dimensions,

• Concept of empiquency,

• Different methods to compress the EMD,

• Variable sampling of EMD,

• Image compression algorithms based on variable sampling in combination with
entropy coding and a DCT coder.

1.7  Possible applications
The work presented in this thesis is strictly concerned with image coding applications.
During the time frame of the PhD studies the author has also been involved in another
type of work that may benefit from the results described here.

Humanitarian demining is an important task to support the population of a region af-
fected by a conflict in returning to the normal use of the country, e.g. for agriculture or
the construction of infrastructure facilities. In this context the EU funded ARC project
aimed at supporting Mine Actions by providing a tool for the fast, accurate and cost-effi-
cient mapping of a mine suspected area and for minefield area reduction. The project is
presented in [87] and [42]. The major contribution by the author to this project is the idea
and implementation of temporal signal processing, detecting modelled object signatures
in a diurnal IR-image sequence. The temporal signal processing in [79,80,81,49] stems
from the author of this thesis. Including EMD in the analysis may provide yet another ap-
proach in the search for better mine detection methods. The EMD method has already
shown excellent classification performance in the analysis of laser vibrometry signals
[61]. 
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Chapter 2

Wavelet and Wavelet 
Packet Methods for 
Image Compression

The first part of this thesis starts with an introduction of the wavelet and wavelet packet
concept and continues with a survey of different image coding methods using these meth-
ods that have evolved over the years. We will go through the history and literature and
present these techniques that lead us on to the problem we have focused on in this thesis.
The compression results given in this chapter are only the results reported in the reviewed
papers. 

2.1  Introduction
Hierarchical methods (pyramidal, multi-resolution) for representing images have several
advantages over plain sampled images or the flat representation. The first to use hierar-
chical representation of images for the purpose of compression were Adelson & Burt [1].
In subband representation [94] of an image the subsampled approximation of the original
image is produced in the same way as in the pyramid coding scheme, but instead of the
difference image used in [1], the subband coding scheme produces the detail image by a
filtering of the original image with a high pass filter. In this section we will introduce two
variations of the subband coding scheme, namely the wavelet transform and the wavelet
packet transform.

2.1.1  Wavelet transform
The wavelet transform of an image is also a multiresolution description. The possibility
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of using the wavelet theory in image compression was outlined in Mallat [54] where the
multiresolution approach used in the subband coding schemes and the wavelet theory was
merged. The wavelet theory introduced new nomenclature into the subband technique be-
cause it wed together different disciplines such as mathematics, seismology, physics and
signal processing into the same field. The difference compared to subband coding is that
the wavelet theory has equipped us with a tool for proper filter construction [20]. The
wavelet transform uses scaled and translated versions of a prototype wavelet as basis
functions to represent a signal. For details of the wavelet theory, the reader is referred to
the text books [19,56,90,93]. 

The high-pass filtered data set is the wavelet transform detail components at that level
of scale of the transform. The low-pass filtered data set is the approximation components
at that level of scale. Thanks to the subsampling, the four sets of components have four
times fewer elements than the original data set. The approximation components can now

re 2.1. Component correspondence between subbands on different levels, starting with a pixel 
in the original image.

Figure 2.2. Components correspondence between subbands on different levels starting with one 
component in the lowest subband (right).
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be used as the sampled data input for another pair of wavelet filters, identical to the first
pair, generating another set of detail and approximation components at the next lower lev-
el of scale. The wavelet theory is an impressive mathematical tool to produce proofs that
this really produces a representation of the image, proofs that did not exist in the time of
subband theory. Today, wavelet coding has become the substitute name for essentially
any kind of subband coding of images. This thesis includes a survey of wavelet and wave-
let packet image coding methods.

Another way of looking at the representation is by looking at the subband correspond-
ence of components. Due to the subsampling the size of the data matrix is the same for all
levels but higher levels contain more subbands. One component in a higher subband rep-
resents the spatial frequency in an area of several pixels in the original image, having the
same size and location as the component would cover if the subband is upsampled to the
original image size. This is illustrated in Figure 2.2. A particular pixel in the original im-
age is represented in every subband, indicating the amount of spatial frequency of the sub-
band at the location of the pixel as shown in Figure 2.1.

2.1.2  Wavelet packets
Since texture typically is a composition of mid and high spatial frequency components

Figure 2.3. The subband stack. Subbands of different scales, the chosen subbands in gray form the 
resulting orthogonal basis shown at the bottom, to the left the wavelet basis and to the right a 

wavelet packet basis.
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the wavelet decomposition does not capture its typical structure. These structures are bet-
ter found by the wavelet packet algorithms. The wavelet packet technique was introduced
in [17] as a natural extension of the wavelet techniques and was immediately investigated
in various areas of signal analysis, [70,45,66] among others. 

The wavelet packet basis is constructed adaptively based on some cost function and
choice of decomposition filter applied to an image. The decomposition of a signal can be
viewed as a tree, where the left branch represents the low-pass horizontal/low-pass ver-
tical filtering, the right branch represents the high-pass horizontal/high-pass vertical fil-
tering and the middle branches represents the low-pass horizontal/high-pass vertical
filtering and the high-pass horizontal/low-pass vertical filtering, respectively.

The wavelet packet tree is constructed in two steps. First, the image is filtered and
subsampled into four new images representing the spatial frequency subbands. Each of
the subbands are filtered and subsampled into four new images, a process that is repeated
to a certain level. By keeping the components in every subband at every level the wavelet
packet tree has the advantage of attaining the complete hierarchy of segmentation in fre-
quency and is a redundant expansion of the image. This is illustrated by the subband stack
in Figure 2.3. In the second step we can choose our best basis to represent the texture by
cutting off branches in the tree controlled by the cost function applied on one node and
on its children nodes. These subbands are to be seen as a collection of bases for this par-
ticular image and filter choice. Choosing a best basis is a way to represent the image in
the most effective way. 

The fully decomposed wavelet packet (WP) tree is shown in Figure 2.4. The wavelet
packet transform generates an orthogonal basis if a proper wavelet is chosen.

For basis selection we apply a cost function on the unsplit subband A, M(A), in
Figure 2.5, and the same cost function on the subbands B, C, D and E resulting from the
one level subband decomposition. 

Split the subband if M(A) >M(B) + M(C) + M(D) + M(E), otherwise keep the sub-
band A as it is.

Figure 2.5. One step subband split.

Figure 2.4. Fully decomposed 3-level wavelet packet tree.

A

B C

D E

split
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In Figure 2.6 are shown two pruned trees, the left representing the wavelet basis and
the right representing a possible best basis. The leaves of the tree represent the basis.
Below are shown some texture images from the Brodatz collection [10] and their best bas-
es, using a certain decomposition filter and cost function, specified in section 3.1. Wave-
let packet decomposition of an image and basis selection results in different bases when
using different filters or different cost functions. The best basis found for a specific im-
age, using a particular filter and cost function, is best for this triplet of image, filter and
cost function. Changing at least one of the three may result in another best basis. In
Figure 2.7 the same filter and cost function are used on three different images.

Figure 2.7. Texture images and their best wavelet packet trees.

Figure 2.6. Tree representation of the bases in Figure 2.3.
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2.2  Wavelet image coding algorithms
Wavelet transform coders are mostly used at rates below 1 bpp and are able to recover
images at nearly perfect visual quality. Already from the beginning of the wavelet theory,
the method was considered for image compression [3,55], due to the close connection to
subband coding [94]. 

2.2.1  Wavelet coding with vector quantization 
The coding algorithm of [3] uses the wavelet decomposition together with a multiresolu-
tionvector quantization scheme and a noise shaping bit allocation procedure as explained
below. The image is decomposed into its wavelet basis using a set of biorthogonal filters
[19]. 

The vector quantization procedure was already accepted in the subband community
as a powerful tool for image compression. The principle involves encoding a sequence of
samples (a vector) rather than encoding each sample individually. Encoding is performed
by approximating the sequence to be encoded by a vector belonging to a codebook. A
multiresolution codebook is created and optimized using a classifying algorithm with a
mean square error criterion; it contains vectors for each resolution level and direction. In
Antonini et al. [3] the training set is a set of vectors belonging to different images includ-
ing the image to be coded. 

The bit allocation is based on the fact that the human eye is not equally sensitive to
all spatial frequencies. The bit allocation, which is a function of the image, is transmitted
as side information. For the coding of the 256x256 Lenna image the bit allocation scheme
is shown in Figure 2.8. In Table 2.1 the coding performance of the Lenna image with dif-
ferent biorthogonal filters is shown.

Figure 2.8. The bit allocation of the wavelet coder.
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Table 2.1.  Coding performance of the Lenna image with different biorthogonal filters.

2.2.2  Embedded zerotree wavelet algorithm 
(EZW)
For transform coders operating below 1 bpp with optimized scalar quantization and bit
allocation the performance depends mostly on the encoding efficiency of the position of
the zero components. Also an important part of the low bitrate image compression is the
coding of the amplitude of those components that will be transmitted as nonzero values.

The zerotree was defined in order to improve the compression of the significance map
in which only the components which are significant according to a specified threshold are
represented. The idea of coding the significance map as a zerotree was introduced by
Lewis & Knowles in [46] and beautifully developed by Shapiro in [78] to become an em-
bedded image coder. The zerotree is based on the hypothesis that if a wavelet component
at a coarse scale is insignificant with respect to a given threshold , then all wavelet com-
ponents of the same orientation in the same spatial location at finer scales, the “children”,
are likely to be insignificant with respect to . 

A wavelet component  is said to be insignificant with respect to a threshold  if
. Such a component is quantized to zero. The others are significant components.

Coding the positions of the significant coefficients is the same as storing a binary signif-
icance map  defined by

(2.1)

Furthermore, a component  is said to be an element of a zerotree for threshold  if
itself and all of its descendants are insignificant with respect to . An element of a zero-
tree for threshold  is a zerotree root if it is not the descendant of a previously found ze-
rotree root for threshold . 

The EZW algorithm [78] is a simple but effective compression algorithm that has the
property of generating the bits in the bitstream in order of importance, yielding a fully em-
bedded code. With an embedded bit stream the reception of code bits can be stopped at
any point and the image can still be reconstructed. The algorithm is based on four key
concepts, 1) a discrete wavelet transform, 2) zerotree coding of the components, which
provides a compact multiresolutionrepresentation of significance maps, 3) entropy coded
successive-approximation quantization, and 4) arithmetic coding.

Two separate lists of coordinates of the wavelet components are maintained. The
dominant list contains the coordinates of the components that have not yet been found to
be significant. The subordinate list contains the magnitude of the significant components.
The scanning of the components during a dominant pass is performed in such a way that
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no child is scanned before its parent. During the scan, each component that is not marked
insignificant by another zerotree is coded with one of four symbols; 1) zerotree root, 2)
isolated zero, 3) positive significant, and 4) negative significant. Each time a component
is coded significant its magnitude is appended to the subordinate list. The string of sym-
bols is then encoded using an arithmetric coder. The performance of the EZW coder, us-
ing a 6 level QMF pyramid decomposition, for two different test images is shown in
Table 2.2.

Table 2.2.  The performance of the EZW coder, using a 6 level QMF pyramid decomposition, for 
two different test images. 

2.2.3  Set partitioning in hierarchical trees 
(SPIHT)
SPIHT was introduced in [75] as a refinement of the EZW algorithm. In SPIHT the way
subsequent components are partitioned and the way the significance information is con-
veyed are fundamentally different than from EZW. SPIHT uses the same hypothesis as
EZW that if a parent component is below a certain threshold then it is likely that all its
descendants are below the threshold too. If this prediction is successful then SPIHT rep-
resents the parent and all its descendants with a single symbol called a zerotree, as in
section 2.2.2. 

SPIHT works in two passes, the ordering pass and the refinement pass. One of the
main features is that the ordering is not explicitly transmitted. Another important fact is
that it is not necessary to sort all the components. A component is said to be sig-
nificant with respect to a threshold if for a given n. The sorting algorithm
divides the set of components into partitioning subsets  and performs a magnitude test

(2.2)

If the subset  is insignificant, all components in  are insignificant. Otherwise the
subset is significant and is partitioned again into new subsets , and the procedure is
repeated. The partitioning uses the hierarchy of the wavelet decomposition. 

In the refinement pass the quantization of components is refined. SPIHT maintains
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three lists of coordinates of components in the decomposition. These are the List of In-
significant Pixels (LIP), the List of Significant Pixels (LSP) and the List of Insignificant
Sets (LIS). The LIP contains coordinates of components that are insignificant at the cur-
rent threshold. The LSP contains the coordinates of components that are significant at the
same threshold. The LIS contains coordinates of the roots of the spatial parent-children
trees.

The efficiency of SPIHT is heavily dependent on finding zerotrees in the LIS, yet pro-
ducing an embedded bit-stream code. The performance of the SPIHT coder with arithmet-
ric coding of the bit stream is shown in Table 2.3.

Table 2.3.  Performance of the SPIHT coder with arithmetric coding of the bit stream, applied to 
the Lenna image.

2.2.4  JPEG2000
JPEG2000 is a recently (2000) developed coding standard for still images. The use of
wavelet compression is one of its many features. Here we will only review the use of the
wavelet coding and leave the rest of the standard, which is well described in [13] for the
interested reader. The standard is working on image tiles of size 128x128 or 256x256, as
if they were individual images, and the wavelet decomposition is applied to each tile as
shown in Figure 2.9. 

Figure 2.9. Wavelet decomposition of the tiles in JPEG2000.

The wavelet transform uses the 9-7 tap biorthogonal filter and Swelden’s lifting tech-
nique [83]. The result of coding the Woman image using JPEG2000 with all its features
is shown in Table 2.4.

bitrate PSNR
0.5 bpp 37.2 dB
0.25 bpp 34.1 dB
0.15 bpp 31.9 dB
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Table 2.4.  Performance of the JPEG2000 coder applied to the Woman image.

2.2.5  Morphological representation of wavelet 
data (MRWD)
The goal of Servetto et al. [76] in their morphological representation of wavelet data is
to find an improved statistical description of image subbands, capable of explicitly taking
into account the space-frequency localization properties of the wavelet.

This alternative approach to the zerotree is based on a region growing technique,
where the significance map is encoded using local probability models depending on the
region being encoded. If a given component is known to be classified as significant, then
components in a small neighbourhood, with high probability, will be significant too (like-
wise for the insignificant ones). In a sense, the morphological approach proposed in [76]
is a concept dual to that of zerotrees, in that it exploits directly the clustering of signifi-
cant components. Also, arbitrarily shaped regions of nonzero components are defined at
no extra cost. 

The coder is a pure waveform coder. The morphological sets considered are not in-
tended to capture any image domain objects or to exploit any property of the human vis-
ual system, but instead are tools used to assign probabilities to sets of wavelet
components.

The probability describing intraband dependencies is determined, for each subband,
by starting with a map of components all labelled insignificant, followed by computing
a partition of components labelled significant or insignificant as follows.

Select a component at a random location within the current subband. If this selected
component is not significant, or if it is significant but it has already been labelled signif-
icant, select another component at a random location until an unlabelled significant com-
ponent is found. Then apply one step of morphological dilation at this location, and label
all the dilated components significant. The morphological dilation is described in [76] as
follows. Consider a set  to which the dilation operation will be applied, and let 
represent some structuring element. Let  denote the morphological dilation operator.
The dilated set  is defined to be the union of all points falling under the support
of the structuring element , when centred at each point in . For each new significant
components found by the dilation, recursively repeat this step, until no new significant
components are found. Stop selecting components at random when all the significant
ones have been labelled significant. Those without a label are labelled insignificant. 

Define two histograms, corresponding to the frequency of occurrence of the compo-
nents labelled significant and insignificant respectively by this partitioning method, and
estimate the entropy of the composite model. 

The encoder then scans subbands in raster scan order until a significant component is

bitrate PSNR
1 bpp 41 dB
0.5 bpp 38 dB
0.25 bpp 35 dB
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detected. Then the encoder signals this event to the decoder with a special symbol, as side
information. One step of dilation is performed: the encoder sends to the decoder and la-
bels significant those coefficients in a neighbourhood of the current significant one. These
new ones are examined: if new significant components are found, the process is applied
recursively on each of these new values; otherwise, the process stops and raster scanning
of insignificant components resumes, until the whole subband is exhausted. As a result,
clusters of significant components are efficiently captured by morphological dilation: the
only side information required to encode a new cluster is the symbol used to signal the
transition from an insignificant to a significant region.

The resulting symbol stream is compressed using arithmetic coding based on the sep-
arate probability tables from above. The performance on the 512x512  Lenna image, us-
ing a five-level wavelet decomposition based on the spline 9-7 biorthogonal filters, with
a uniform quantizer is shown in Table 2.5.

Table 2.5.  The performance of MRWD on the 512x512  Lenna image.

2.3  Wavelet packet coding algorithms
The idea behind the wavelet packet coder is that the adaptive structure will lead to better
coding results. The wavelet packet tree is any sub-set of a fully decomposed tree of a cer-
tain depth. To find the basis (sub-tree) a cost function is introduced. The tree is then
searched for the basis that minimizes the selected cost function. If the filter and cost func-
tion are appropriately chosen the decomposition produced by the wavelet packet tree
should, theoretically, always be better than that produced by the wavelet basis since this
basis is included as a special case of the admissible wavelet packet structures. 

2.3.1  Best basis subband coding
Although the wavelet packet and best basis concept were revealed to the public in 1992
[17] work had been done on images using this technique before that under the name of
best basis subband coding [92]. It is based on the work of [16], at the time unpublished,
extending it to two dimensions.

The best basis scheme avoids an exhaustive search over all bases. The algorithm starts
by growing a full tree to the desired depth. Then, starting from the leaves, for every node
the cost of keeping the node and pruning it is compared. The node is kept if the cost of
keeping it is lower then that of pruning it. The process is continued at every level until the

Bitrate PSNR
1 bpp 40.33 dB
0.75 bpp 38.98 dB
0.5 bpp 37.17 dB
0.25 bpp 34.25 dB
0.125 bpp 31.09 dB
0.0325 25.82 dB
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root of the tree is reached. 
In [17] QMF filters were used and the cost function denoted energy entropy (Equation

3.12). Compression is achieved by using a threshold ε on the components from the best
basis and simply discharging the components below this threshold. Alternatively, for a
fixed compression rate, the components are sorted and the appropriate number of com-
ponents are used. Note that no quantization is applied to the components.

2.3.2  Rate-distortion optimized wavelet packet 
coding
The problem of optimal bit allocation in a wavelet packet framework was addressed in
Ramchandran & Vetterli [69,70]. They used a rate-distortion criterion to find the best de-
composition for a given signal. The idea is that each node in the fully decomposed tree is
assigned the Lagrangian cost

(2.3)

Then the basis is chosen by forming the subtree which has the minimum sum of cost for
its leaves. The decision to prune is based on the Lagrangian cost function for a fixed value
of . The value of  is found by sweeping through the sequence of values and for each
value of  the least cost quantization for each node is selected as the one that minimizes
Equation 2.3. The total rate  is compared to the budget rate , if 
then  is adjusted and the procedure starts over. The sequence of  is achieved by us-
ing Newton’s method. The basis selected should minimize the distortion given a bit budg-
et, which is the essence of image coding. 

In [70] the image is decomposed using the Db4 filter and trees were grown to a depth
of 4 for a 512x512 image. First order entropy is used as the bitrate measure as scalar
quantization is assumed, MSE is used as a distortion criterion. This codes the Barbara im-
age to PSNR 36.4 dB at 0.92 bpp. The main achievement with this work was that it
showed that the wavelet packet best basis approach performs better on high frequency
textures than traditional coders. 

2.3.3  Optimal entropy constrained lattice vector 
quantization (ECLVQ)
One of the advantages of wavelet packets for image compression is that it is adapted to
the spatial frequency characteristic of the image. A wavelet packet basis can be chosen
to maximize the energy compaction in each subband. In [43] wavelet packet representa-
tion is applied for entropy constrained image compression using lattice vector quantiza-
tion. In resolving the mutual dependencies of the wavelet basis and source coding a two
phase algorithm is used. First the optimal entropy constrained lattice vector quantization
is developed for a given wavelet packet structure, then a greedy heuristic search algo-
rithm is adopted to identify a locally optimal wavelet packet basis. The greedy algorithm
does not guarantee an optimal basis; still, it performs as well as the other coders described
here. Performance of the coder on the 512x512 Lenna image is presented in Table 2.6.

L Di λRi+=

λ λ
λ

Ri∑ RT Ri∑ RT
>

λ λ



2.3 Wavelet packet coding algorithms

29

Table 2.6.  Performance of the ECLVQ coder on the 512X512 Lenna image. 

2.3.4  Constrained wavelet packet coding (CWP)
In this section a more thorough description of a SPIHT-WP-based coder is presented from
Khalil et al. [41]. Especially the modifications necessary for using SPIHT with the adap-
tive tree structure are explained. The coder is used in the experiments in section 3.3 as a
comparison with the more theoretical results.

With the wavelet-transform-based coder the octave band decomposition structure was
fixed. The strength of the SPIHT algorithm for coding wavelet components is obvious. It
would be desirable to combine the basis selection from the wavelet packet transform with
SPIHT.

The parent-children relationship for SPIHT assumes that the decomposition structure
is an octave-band decomposition. This means that in order to get SPIHT working with the
more general wavelet packet structure (WP-structure) some modifications must be made. 

Figure 2.10. Parent-children relationship for a WP-structure.

In Figure 2.10 the region Parent is spatially co-located with the regions marked Chil-
dren. In the wavelet transform case each child occupies a size corresponding to ¼ of that
occupied by the parent. In the WP-structure in Figure 2.10 each child-region is at the
same scale as the parent and thus occupies a region of the same size as the parent. The
reason for choosing Parent as parent is that Parent is in a subband that has more low-pass
character than the ones denoted Children, and low-pass subbands better predict the energy
of high-pass subbands than the other way around.

Bitrate PSNR
0.5 bpp 36.97 dB
0.25 bpp 33.83 dB
0.15 bpp 31.82 dB
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Spatial reordering
To be able to use SPIHT efficiently on the WP-structure we have to take into account
these new definitions of parent-children relationships, where children may reside in dif-
ferent subbands of the same scale. The modifications should be made so that inter-band
similarities can be exploited. In Figure 2.11 this is exemplified for the same structure as
in Figure 2.10.

The reordering permits the use of the SPIHT-algorithm without any changes to the
SPIHT-algorithm. The simple 1:4 (two-dimensional case) parent-children mapping of a
wavelet structure does not always hold in a general WP-structure. Instead the WP-de-
composed data is reordered with some constraints explained below. In Figure 2.11 the
simple 1:4 (two-dimensional case) parent-children mapping holds; in a general WP-
structure this may not be the case. In Figure 2.12

Figure 2.11. The upper figure is the WP-structure with the desired parent-children relationships. In 
the lower figure the data has been reordered so that the simple parent-children relationship hold.

Parent have 7 children of which four represent a region 4 times the size of the parent. If
the children represent a larger region than the parent then parts of the signal that do not
affect the parent can affect the children. This leads to reduced possibilities of finding ze-
rotrees

Following [41], the problem of in-coherent parent-children mappings is solved by us-

Parent

Children
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ing a limited selection of admissible bases for the WP-decomposition. The limitations are
implemented with two constraints on the algorithm for wavelet packet basis search.

The problem presented in Figure 2.12 arise from the fact that a subband that should
be a child subband is decomposed one level more than its parent-subband. The constraint
for avoiding these situations is formulated as:

“Rule B: When pruning parents, their spatially co-located child subbands may need to
be pruned also in order to keep the tree structure valid.”

Another mismatch in the original 1:4 parent-children mapping occurs if a child sub-
band is not decomposed enough.

Figure 2.12. A WP-structure that does not have a one to four parent-children mapping. 

For the one to four parent-children mapping to work a child subband must be decom-
posed to the same level as its parent subband or at most one level less. To avoid the prob-
lem of child bands not being decomposed enough the constraint added is:

“Rule A: Any four child bands will be considered as candidates for pruning only if
their current decomposition level is the same as that of the spatially co-located parent
band”

The reordering of a number of child subbands is done so that the resulting structure
resembles a subband that is decomposed one level less than the reordered bands. That is,
components representing the same spatial region in the child subbands are grouped to-
gether. This leads to larger regions representing the same spatial region of the original sig-
nal, which should serve as a motivation for reordered subbands to resemble a next higher
subband.

Using the decomposition tree we would like to prune nodes in such a way that the tree
after pruning is an octave-band decomposition tree of the same depth as the original tree.

The reordering is started from the bottom of the decomposition tree reordering indi-
vidual components as seen in Figure 2.13. The next level up the reordering has to be made
in units of 2x2 components (two-dimensional case) shown in Figure 2.14. This process is
continued until the tree shown in Figure 2.15 is achieved. 

When the reordering is complete the reordered structure can be fed to the SPIHT coder
since now the parent-children relationships are adapted to SPIHT. On the decoding side
the bit stream from SPIHT can be decoded producing a reconstruction of the reordered.
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Figure 2.13. The original decomposition structure.

Figure 2.14. The first level of reordering as pruning of the WP tree (the dotted lines mark the 
spatial location of the subbands that are reordered). 

Figure 2.15. Lastly the final stage of reordering, which makes the pruned tree into an octave-band 
tree.
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structure. Before this structure can be inversely transformed an inverse reordering has to
be made to transform the structure into its original form. This inverse reordering can also
be explained by utilizing the decomposition tree. This time starting from the root each
node in an octave-band tree is split (inverse reordered) until the split tree has the same
shape as the original tree. 

This coder compresses the Barbara image to 32.61 dB at 0.5 bpp.

2.3.5  WP-IMRWD
In [96] an improved version of the coder in section 2.2.5 is applied to a wavelet packet
basis. The improvements are the introduction of some new features: 1) Exploitation of the
knowledge of component magnitude in the parent band, 2) Reordering of the residual part
of the significant map according to the distance to the previously visited point. 3) Em-
ployment of hierarchic numerative entropy coder. 

As in section 2.2.5 the problem of children nodes having more than one parent must
be solved. This is done by applying inverse wavelet packet transform to the parent block
until the full resolution parent block is retained. Then forward wavelet packet transform
is applied to the retained parent block by using the decomposition basis of the child. Since
the layout of the two blocks is now the same, the parent-child relation can be established.
The procedure is pictured in Figure 2.16. The performance of the coder is presented in
Table 2.7.

Parent block

IWPT

WPT

Descendant block

Figure 2.16. Parent-child relation establishing procedure. 
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Table 2.7.  The performance of the WP-IMRWD coder. 

2.3.6  Compatible zerotree quantization of wavelet 
packets (CZQ-WP)
The issue of wavelet packet zerotrees was also addressed partially by Xiong et al. in the
space-frequency quantization (SFQ) algorithm presented in [95], which employs a rate-
distortion (R-D) optimization framework to select the best basis and to assign an optimal
quantizer to each of the wavelet packet subbands. In their work, however, the subband
decomposition was restricted to avoid the parenting conflict.

In [68] a general zerotree structure for an arbitrary wavelet packet geometry in an im-
age coding framework is presented. A Markov chain-based cost estimate of encoding the
image is used. This adaptive wavelet zerotree image coder has a relatively low computa-
tional complexity, performs comparably to the state-of-the-art image coders, and is capa-
ble of progressively encoding images.

In order to resolve the parenting conflict, Rajpoot et al. [68] suggest that the child
nodes are moved up in the tree so that they are linked directly to the root node of the pri-
mary compatible zerotree associated with the family of subbands. This generates a com-
patible zerotree structure without restricting the basis selection. 

The algorithm uses a set of rules to construct the overall compatible zerotree structure
for an arbitrary wavelet packet basis. These are reviewed here. The only assumption
made is that the lowest frequency subband of the selected basis is always at the coarsest
resolution. 

Rule (a) If a node P at a coarser resolution is followed only by a node C at the next
finer resolution (as in a wavelet transform), the node P is declared as a parent of C. 

Rule (b) If a node P is followed by four nodes C1 , C2 , C3 , and C4 (at the same res-
olution), then P is declared to be the parent of all these four nodes. 

Rule (c) If four subbands P1, P2, P3, and P4 at a coarser resolution are followed by
four subbands C1 , C2 , C3 , and C4 at the next finer resolution, then node Pi is declared
to be the parent of node Ci (for i=1,2,3,4).

Rule (d) If a node P is at a finer resolution than four of its children, say C1 , C2, C3 ,
and C4 , then P is disregarded as being the parent of all these nodes and all of them are
moved in the tree under a node at the same or a coarser resolution.

In order to ensure that the selected basis is zerotree friendly, [68] use a cost function
that can estimate the entropy of quantized coefficients belonging to the compatible zero-
trees. The cost can be estimated by computing the entropy of a discrete random variable

PSNR

Bitrate Barbara Lenna
1bpp 38.03 dB 40.95dB
0.5bpp 33.05 dB 37.54 dB
0.25bpp 28.52 dB 34.51 dB
0.125 bpp 25.56 dB 31.36 dB
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whose value is drawn from the set of codewords used to encode the significance map. The
CZQ-WP coder performs as presented in Table 2.8 with the factorized 9-7 biorthogonal
filter.

Table 2.8.  The performance of the CZQ-WP coder. 

2.4  Segmentation-based image coding 
During the past years there have been many different approaches to achieve better image
compression than the JPEG standard. The wavelet transform is now a part of the
JPEG2000 standard but the wavelet packet techniques have not yet reached their ultimate
application and performance. One important drawback of the methods described so far in
this chapter is that they all operate on the entire image. One approach is to make the as-
sumption that the wavelet packet best basis search finds the resonance in the image and
thereforee should be applied to pure textures only. This is done by segmenting the image
and finding the best basis for each segment.

2.4.1  Edge separating wavelet image coding
Wavelet-based image coders are good at representing smooth regions and isolated point
singularities. However, they are less adaptive at representing perceptually important edge
singularities, and coding performance suffers significantly as a result. In [28] Froment &
Mallat proposed a two-stage image coder framework based on modelling images as edge
cartoons plus textures. The coder works by first inferring and efficiently coding the edge
information from the image using a multiscale wavelet decomposition. Second, the resid-
ual, “edgeless” texture image is coded using a standard wavelet coder. This preliminary
coder improves significantly over standard wavelet coding techniques in terms of visual
quality, according to [28].

2.4.2  Joint use of segmentation and wavelet packet
The best way to find an optimal basis representation for an image is to search jointly for
the best segmentation and wavelet packet tree. This is the idea behind the following meth-
ods. 

PSNR

Bitrate Barbara Lenna
1bpp 36.15 dB 40.10dB
0.5bpp 31.60 dB 37.55 dB
0.25bpp 28.12 dB 34.56 dB
0.1 bpp 24.27 dB 29.95 dB
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Double tree (DT)
The wavelet packet tree adapts to frequency content, the spatial quadtree adapts to spatial
content. The spatial quad tree does not have the same capacity as a WP tree for compact-
ing the energy of the image. The double tree was first suggested by Herley et al. [32,33]
to address the problem of non-stationarity without sacrificing the energy compaction, by
which is meant the deterministic non-stationarity described in section 1.1.4. The expan-
sion finds the optimal wavelet packet trees over spatial segments of the image. This al-
gorithm is extended to the use on images in [34]. The algorithm calculates the best
wavelet packet tree for the entire image and stores the cost. Then the image is segmented
into a first level quad tree and separate wavelet packet trees are calculated for each of the
four segments and the cost is stored. Then the image is segmented into a second-level
quad tree and separate wavelet packet trees are calculated for each of the sixteen seg-
ments and the cost is stored. This is iterated until sufficient depth of the quad tree is
reached. The overall basis search identifies the most efficient dyadic segmentation and
corresponding wavelet packet expansions for the segments.

The double tree performance with a 7-9 tap linear phase filter and uniform quantiza-
tion is shown in Table 2.9 [34]. 

Table 2.9.  Performance of the double tree coder.

The dual double-tree (DDT)
The dual double-tree in Smith & Chang [82] finds the optimal spatial segmentations of
the wavelet packet nodes. The dual double tree is produced by first growing a single
wavelet packet tree followed by the full segmentation of all subbands. The dual double
tree performance with a 7-9 tap linear phase filter and uniform quantization is shown in
Table 2.10 [34].

Table 2.10.  Performance of the dual double tree coder.

The joint space and frequency best basis
Both the double tree and the dual double tree provide an asymmetric treatment of space

PSNR

Bitrate Barbara Lenna
1bpp 36.55 dB 39.32 dB
0.5bpp 31.73 dB 36.26 dB
0.25bpp 28.06 dB 33.24 dB

PSNR

Bitrate Barbara Lenna
1bpp 36.71dB 39.72 dB
0.5bpp 32.03 dB 36.62 dB
0.25bpp 28.27 dB 33.49 dB
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and frequency. As a result, neither tree attains the full joint decomposition in space and
frequency. 

An algorithm that considers both frequency and spatial split at each node is presented
in [82]. It combines the double-tree and dual double-tree to attain the best joint space and
frequency decomposition for image compression. 

Figure 2.17. The best joint space and frequency decomposition uses both frequency and spatial 
split at each node. Solid lines describe frequency split F, dashed line describe spatial split S.

In Figure 2.17 the two step joint space and frequency decomposition is shown. Solid
lines describe frequency split F, dashed lines describe spatial split S. If we approximate
the output from FS to be equal to the output from SF these data need not be produced
twice. The accuracy of this approximation is filter dependent. The decomposing can be
viewed as the graph in Figure 2.18.

Figure 2.18. Joint spatial frequency decomposition graph.
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The left branch FFF provides the fully decomposed wavelet packet tree while the
right branch SSS provides the fully decomposed spatial quadtree. The middle nodes pro-
vide different combinations of space and frequency decompositions where DT is one and
DDT is another. This gives a larger set of possible bases to choose from when selecting
the best basis. An example for a one-dimensional (time-varying) signal is shown in
Figure 2.19 [82]. 

Figure 2.19. One example of a time frequency tiling possible with the basis set in Figure 2.18 but 
not with WP, DT or DDT.

Performance of the joint space and frequency decomposition of the Barbara image is
shown in Table 2.11, when using a R-D optimized cost function for best basis selection
[82].

Table 2.11.  Performance of the joint space and frequency decomposition of the Barbara image 
using different filters.

2.5  Summary
In this chapter we have presented some image coding algorithms using wavelet and
wavelet packet methods that have contributed to the development of the field. The wave-
let compression methods have found their way into use in standards while the wavelet
packet algorithms still struggle with problems. 

PSNR

Bitrate
Haar 
filter

QMF 
filter

2.0bpp 43.8 dB 43.8dB
1.0bpp 37.7 dB 37.5 dB
0.5bpp 33.0 dB 22.7 dB

time

frequency
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The algorithms presented in this chapter are typical in the sense that they focus on the
quantization, bit allocation, and entropy coding steps of the coding chain shown in
Figure 1.10. The problem of choosing the basis is often not treated apart from the basic
scheme of each method. In the wavelet case one can argue that the basis is fixed but the
result still changes with the choice of filters. For the wavelet packet case the bases are to-
tally different depending on the image, the choice of filter, and the choice of cost function.
Also the choice of basis selection method, bottom-up or a greedy top-down search affects
the result. This is not treated in the earlier works. 

The wavelet packet methods demonstrate the difficulties of using the principle to get
a good representation of the image for compression purpose. The main problem identified
is the use of wavelet packets on the entire image while an optimal basis is only found for
pure textures. Different filters are also shown to influence the results. But the wavelet
packet methods also demonstrate the potential to find a good representation, although the
problems are not yet solved. 

In the next chapter we will investigate the wavelet packet trees in more detail and how
the different bases depend on image structure and on the choice of filter as well as cost
function.
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Chapter 3

The Wavelet Packet 
Triplet Problem

When working with image coding algorithms using the wavelet packet transform different
bases appear as the best basis for the same image when using different cost functions or
filters. For different images, the best compression is achieved with different bases due to
the different image statistics. This is almost intuitively understood. The triplet of image,
filter, and cost function is closely related in the analysis of the compression ability of the
wavelet packet transform. The influence of filter and cost function in connection with dif-
ferent image statistics is analysed in this chapter.

We start the presentation of the triplet problem by analysing a database of coding re-
sults using different filters and cost functions on a subset of the Brodatz texture images.
The data base contains coding results from 2295 different triplets, the combination of 17
images, 15 filters, and 9 cost functions. The database is analysed and discussed with re-
spect to images, cost function effects, and filter effects. Due to the limited space in this
thesis only a part of the result is presented in plots. From this we get some guidance how
to choose filter and cost function in the implementation of one of the wavelet packet cod-
ers from Chapter 2. The same filter and cost function is also used in the next part of the
chapter where we present a method to analytically calculate the expected wavelet packet
basis, with a top-down approach. Here we use a signal model to represent the image. We
then apply this method to different images and compare the top-down calculated bases
with the bottom-up best bases for the same images. 

We use the expression best basis for the basis found by the best basis search algorithm
of Coifman & Wickerhauser [17]. This algorithm uses a bottom up search strategy and is
stated to find a global optimal basis. The expression wavelet packet basis is used for bases
found to be optimal by any search algorithm. In this part of the thesis we are mainly con-
cerned with the compression ratio achieved by the wavelet packet transform, and restrict
ourselves to estimating the entropy of the components as a measure of possible compres-
sion performance except in one section where we test the performance of the SPIHT coder
and the CWP coder. 



Chapter 3 The Wavelet Packet Triplet Problem

42

3.1  Decomposing the Brodatz 
textures
The reason for using texture images in this work is that we are specifically interested in
efficient representation of the resonance in the image. We have used the Brodatz collec-
tion of texture images for most of our experiments [10]. The test images available for our
experiments are presented in Appendix A, and are a set of 17 digitized images out of the
collection in [10]. 

The images have different resonance due to their different textures. The cost function
applies to the output from the filtering process. This leads to the questions: Does the filter
matter? What is the result if another cost function is used? The resulting best bases when
applying the Haar filter and Db4 filter with the energy entropy cost function, specified in
Equation 3.12, and the log energy cost function, specified in Equation 3.14, respectively
to the images in Figure 3.1 are shown in Figure 3.2 - 3.7. 

Clearly we can see that the change of filter or cost function results in different bases.
The different bases representing the best basis for the triplet image, cost function and fil-
ter, raise several questions. Why is there no typical tree for a particular image or why is
there no strong trend for a certain type of tree in combination with a fixed filter? Which
combination is best for compression of the image?

Figure 3.1. The textures analysed in Figure 3.2 - 3.7, beach, brickwall, gravel.

3.2  Results from the triplet database
In this section the compression performance of the wavelet packet transform is evaluated
through extensive testing of all combinations of 17 images, 9 cost functions and 15 dif-
ferent wavelet filters. The motivation is to compare the filter theory and cost function dis-
cussion with experimental results and find explanation as to why the common adhoc use
of wavelet packets does not always work as expected. 

3.2.1  Entropy estimations
An important measure in image coding applications is the cost for coding the transform
components. It may be even more important than the cost for choosing and representing
the basis. We simulate the coding cost by measuring the entropy of the components by
the theoretically calculated entropy presented in Equation 3.1. 
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The image is represented by a sequence of pixels, , created by
a scan of the two-dimensional image array, where  is the pixel at location i, 
is the number of pixels in the image, as a message generated by a discrete source together
with a set of probabilities, . Then the image is a finite dimensional random vector
variable  where  is the pixel random variable at location i. In
limes, , the random vector is a random process, and the random process is the in-
finite dimensional generalization of a vector random variable [22]. One image is a reali-
sation of the random process. We assume ergodicity and thereforee we can use one
realisation of our process (one image) to compute statistics [74].

Let pxk be the probability that the pixel x takes a value k out of an alphabet defined by
the set of amplitude values, then the entropy for this pixel x is

(3.1)

and we know that we can represent the pixel with H bits/ pixel. We want to know the en-
tropy of the whole image or of the part of the image representing the subband. When we
consider two pixels at the same time we use the joint probability  for the pixels xi
and xj, can be represented by the relative frequency of the pair (i,j), all i,j.

 only if xi and xj are independent. The entropy for the pair of pix-
els is the joint entropy  and we have 

 (3.2)

with equality if and only if the pixels xi and xj are independent! 
For the whole image we can write the joint entropy as

(3.3)

and if the pixels values are drawn from the same distribution then

 (3.4)

with equality if they are independent.
The entropy rate of the random vector variable  representing our image is

 bits / pixel. (3.5)

The collection of random variables in a vector is independent if and only if the joint
(for the whole image) probability density function (pdf)  can be writ-
ten as

(3.6)

x x1 x2 … xN N×, , ,( )=
xi n N N×=

p xi( )
X X1 X2 … Xn, , ,( )= Xi

n ∞→

H x( ) pxk pxklog
k 1=

N
∑–=

p i j,( )
p i j,( )

p i j,( ) p i( ) p j( )( )=
H xi xj,( )

H xi xj,( ) H xi( ) H xj( )+≤

H image( ) H xi( )
i 1=

n
∑≤

H image( ) nH xi( )≤

X

H image( )
n------------------------ H xi( )≤

p x1 x2 … xN N×, , ,( )

p x1 x2 … xN N×, , ,( ) p x1( )p x2( )…p xN N×( )=
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Figure 3.2. The beach texture, its best basis tree using Haar filter and the energy entropy cost 
function to the left and Haar filter and the log energy cost function to the right.

Figure 3.3. The brickwall texture, its best basis tree using Haar filter and the energy entropy cost 
function to the left and Haar filter and the log energy cost function to the right.

Figure 3.4. The gravel texture, its best basis tree using Haar filter and the energy entropy cost 
function to the left and Haar filter and the log energy cost function to the right.
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Figure 3.5. The beach image, its best basis tree using the Haar filter and the energy entropy cost 
function to the left and the DB4 filter with the energy entropy cost function to the right.

Figure 3.6. The brickwall image, its best basis tree using the Haar filter and the energy entropy 
cost function to the left and the DB4 filter with the energy entropy cost function to the right.

Figure 3.7. The gravel image, its best basis tree using the Haar filter and the energy entropy cost 
function to the left and the DB4 filter with the energy entropy cost function to the right.
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If each random variable has the same distribution we have an iid (independent, iden-
tically distributed) random vector . 

The probability density function (pdf) of a pixel describes how probable a pixel value
is. The relative frequency of the pixel value measures the probability of the pixel value
independent of its neighbours. This memory-less assumption, together with the ergodic-
ity assumption, is the common approximation made when estimating the pdf with the
grayscale histogram of the image. 

Common models for the pdf of a memory-less source, used in image processing, are
the Laplacian density

, mx=0, (3.7)

and the Gaussian density

(3.8)

The generalized Gaussian density

(3.9)

(3.10)

can be used as a model of the pdf [54,23]. α models the variance and β is inverse propor-
tional to the decreasing rate of the peak. This model can represent both the Laplacian
(β=1), and the Gaussian (β =2) distribution as special cases. 

For a memory-less source we can estimate the pdf with the grayscale histogram of the
image and the entropy rate of the source is given by Equation 3.1.

The entropy of the pixel value is the entropy true to the intentions of Shannon and
common in the telecommunication community [77]. The calculated entropy of the pixel
value gives us a hint of the compression rate achieved for a memory-less source. In order
to estimate the coding performance, the entropy of the pixel value has been used in our
experiments knowing that we can have better compression with source coding algorithms
that take care of the memory in the signal. The cost of representing the basis tree structure
is not taken into consideration here. This is because we are interested in the properties of
the transform alone and the cost of coding the decomposition tree is minor compared with
the cost of coding the values and positions of the transform components. Fine quantiza-
tion of the components is used as these are typically represented with 8 bpp. The trans-
form itself generates lossless compression with perfect reconstruction filters. No efficient
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bit allocating procedures are here applied on the component matrix in order to achieve
better compression. 

3.2.2  Cost function effects
Here we describe the cost functions used in the triplet database. The behaviour of the cost
functions is very different depending on the range of the value of the components. The
norm |x| and x2 have the same basic behaviour in the interval 0..1 as in 1..255 but cost
functions based on log(x) show different characteristics in the two different intervals. Al-
though the curve form of the functions log(x2) and log(x) looks the same in the two inter-
vals, working in one interval gives large negative values for inputs close to the lower end
of the interval and values close to zero for the upper end of the interval while the other
interval gives values close to zero for inputs close to the lower end of the interval and
large values for the upper end of the interval 

The functions x2log(x2), and xlog(x) show an even larger difference in the two inter-
vals, see Figure 3.8 and Figure 3.9. In the interval 0..1 these functions are close to zero at
both ends of the interval with a maximum negative value in the middle of the interval
while in the interval 1..255 the functions are dominated by their x and x2 components and
can almost be approximated by them. 

Figure 3.8. For the interval 0..1, x2log(x2), xlog(x), log(x2), log(x), x, x2.

Figure 3.9. For the interval 1..255, x2log(x2), xlog(x), log(x2), log(x), x, x2.

In the following, the inputs are in the interval 1..255. This is why the energy entropy
shows almost the same results as the quadratic norm in most of the plots. Cost functions
based on the form x2log(x2) and xlog(x) were originally designed for use on the probabil-
ity distribution, on the interval 0..1 [77] and have the originally intended properties only
in images normalized to the interval 0...1.

The best basis algorithm is used in the construction of the triplet database. The algo-
rithm is dependent on the assumption that the cost function is additive. An additive cost
measure is defined by

(3.11)

where  is the cost for the signal component i.
The different cost functions we have used are presented below.

M C xi( )
i

∑=

C xi( )
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Entropy of the pixel energy (3.12)

This is the cost function used in the wavelet packet community under the misleading
name Shannon entropy. In this thesis we call this cost function the Energy Entropy. This
cost function is applied to the subbands components in the interval 1..255, thus it func-
tions almost like the quadratic norm. 

We estimate the true entropy of a subband by calculating 

Entropy of a subband (3.13)

with  being the normalized histogram of the same subband. This is a fair approxi-
mation of the entropy of the subband as long as the subband is not too small. It should be
noted that this measure, if used as a cost function, is not additive. 

Logarithmic cost (3.14)

The logarithm of the pixel energy is used as a cost function applied on the image in
the interval 1..255. 

The Lp -norm (3.15)

The L1-norm and the L1.99-norm have been used as the cost function most likely to match
the Laplacian and the Gaussian probability distributions. The L1 - norm, representing the
absolute mean of the grayscale values, and the L2 - norm are popular measures. The en-
ergy measure L2 - norm, the quadratic norm, representing the variance of the grayscale
values if the mean = 0, is not useful to make tree-pruning decisions when the decompo-
sition is orthonormal. We use the L1.99 - norm as a measure close to the energy measure
and we use some norms lying in between to see if any of them possibly match some gen-
eralized Gaussian distribution. 

3.2.3  Measurements of cost function effects
We first present results on how cost functions affect the decompositions. We compare the
entropy estimations for best bases chosen with different cost functions, while the other
two variables are held constant. 

Consider the texture images in Figure 3.10, brickwall and cslfleath.
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Figure 3.10. The images brickwall (left), cslfleath (right).

In Figure 3.11, and Figure 3.14 the images are analysed with the Haar filter and their
associated best bases are chosen with the different cost functions described in
section 3.2.2. The cost of coding the components, estimated by Equation 3.1, from the
best basis is marked by o and the cost of coding the components from the corresponding
wavelet basis is marked by x. It is expected that the x:s form a horizontal line as the meas-
ure is taken on the same wavelet tree using the same decomposition filter. Analysis of
more images is collected in Appendix B. 

For both images, the wavelet packet basis performs better than the wavelet basis.
Figure 3.12 and Figure 3.13 show the bases chosen with the Haar filter and the cost func-
tions defined in Equation 3.13 and Equation 3.14 for the image cslfleath in Figure 3.10.
These figures show basis trees with very different structure, and performance worse than
the other cost functions, but still better than for the wavelet basis. However, note the scal-
ing of the y-axis, in bits/pixels. The difference is very small! Since we assume lossless
coding without coarse quantization of the transform components the visual performance
(measured in PSNR) is not affected, hence the performance of different bases is almost
in-distinguishable.

The next example image (brickwall) produces similar results with the analysis filter
Haar. Figure 3.15, Figure 3.16 and Figure 3.17 show bases with different performance.
The basis in Figure 3.15 looks similar to the wavelet basis. However, this is not the basis
with performance most similar to the wavelet basis; that goes to the basis in Figure 3.16,
with performance in position 3 in Figure 3.14.

While the bases chosen with the Haar filter and different cost functions all perform
very close to the wavelet basis performance, we see another result when choosing another
analysis filter. When the images are analysed with the bior1,5 filter we see that instead of
having the difference in performance of different cost functions in the range of 0,01 bit/
pixel we now have the difference in 2 or 3 bit/pixel between best and worse performance,
Figure 3.18.

The plots in Figure 3.18, Figure 3.19, and Figure 3.20 representing the analysis with
the bior1.5 filter and the db4 filter clearly demonstrate the importance of using a filter and
a cost function that work well together. For some combinations of filter, cost functions
and image, the best basis selection algorithm does not work well at all. Either the fully
decomposed tree is chosen or the algorithm chooses not to decompose the image at all,
giving the entropy of the image itself. The fully decomposed image has reduced entropy
but the best result is achieved with a carefully chosen best basis that represents the reso-
nance in the image.
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Figure 3.11. The cslfleath image decomposed with the Haar filter and where the cost function is 
varied. The cost of coding the components of the best basis is marked by o and the cost of coding 

the components of the corresponding wavelet basis is marked by x.

Figure 3.12. The best basis for the triplet filter Haar, image cslfleath, and cost function hest, 
defined in Equation 3.13. The estimated entropy is shown in position 2 in Figure 3.11. 

Figure 3.13. The best basis for the triplet filter Haar, image cslfleath, and cost function log, 
defined in Equation 3.14. The estimated entropy is shown in position 3 in Figure 3.11. 
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Figure 3.14. The brickwall image decomposed with the Haar filter and where the cost function is 
varied. The cost of coding the components of the best basis is marked by o and the cost of coding 

the components of the corresponding wavelet basis is marked by x.

Figure 3.15. The best basis for the triplet filter Haar, image brickwall, and cost function hest, 
defined in Equation 3.13. The estimated entropy is shown in position 2 in Figure 3.14.

Figure 3.16. The best basis for the triplet filter Haar, image brickwall, and cost function log, 
defined in Equation 3.14. The estimated entropy is shown in position 3 in Figure 3.14.
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Figure 3.17. The best basis for the triplet filter Haar, image brickwall, and cost function sh, 
defined in Equation 3.12. The estimated entropy is shown in position 1 in Figure 3.14.

Figure 3.18. The cslfleath image decomposed with the filter bior1.5 and where the cost function is 
varied. The cost of coding the components of the optimal wavelet packet basis is marked by o and 

the cost of coding the components of the corresponding wavelet basis is marked by x.
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Figure 3.19. The brickwall image decomposed with the db4 filter and where the cost function is 
varied. The cost of coding the components of the optimal wavelet packet basis is marked by o and 

the cost of coding the components of the corresponding wavelet basis is marked by x.

Figure 3.20. The cslfleath image decomposed with the db4 filter and where the cost function is 
varied. The cost of coding the components of the optimal wavelet packet basis is marked by o and 

the cost of coding the components of the corresponding wavelet basis is marked by x.
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3.2.4  Filter effects
In this section we review some filter properties important to image analysis and compres-
sion and present the filters used in the triplet database. This is done in preparation for the
analysis of the triplet database from a filter point of view presented in section 3.2.5. The
results presented in this section are proved in the text books [19,56,90,93] if no other ref-
erence is given. 

Orthogonal filters implement a unitary transform between the original and its sub-
bands. One of the important features of unitary transforms is conservation of energy. This
is essential in section 3.4. For compression applications we want the wavelet and wavelet
packet transform to produce only a few non-zero components.

Definition. Vanishing moments [56].  has p vanishing moments if 

(3.16)

Suppose we want to decompose a function  into wavelets. We compute all the
wavelet components . If  is L-1 times continuously differentiable and 
has L vanishing moments, we will only have large values of the wavelet components for
singularities of  or its derivatives. This is why the edges are clearly visible in the trans-
form images. This also means that the signal properties dictate the number of vanishing
moments required for the wavelet to be able to decompose the signal in a manner suitable
for compression. 

Because of the cascading effects of the wavelets in a wavelet or wavelet packet de-
composition we get accumulated errors from the filtering process. The decomposition
can be described by the equivalent filter  obtained by the cascading of the filters
H0 and H1. 

(3.17)

where dr is the depth of the cascade of path r and  indicates which of the
filters H0 or H1 is used.

Linear phase is desired since such filters can be cascaded in a pyramidal filter struc-
ture without the need for phase compensation. Symmetric filters have linear phase. Ex-
cept for the Haar basis, all real orthonormal wavelet bases with compact support are
asymmetric. Using compactly supported orthonormal wavelets (other than Haar) symme-
try and exact reconstruction are incompatible requirements if the same filter is used for
reconstruction and decomposition. Biorthogonal wavelet bases uses two dual (symmet-
ric) wavelet filters. Linear filters are wanted in order to avoid phase distortion around
edges.

There is a link between the regularity of  and the multiplicity of the zero at 
of , where  denoted the Fourier transform of .
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Definition. Lipschitz regularity [56]. A function f is bounded and uniformly Lipschitz
 over if 

(3.18)

These zeros are important because they “kill” aliasing components when cascading
the filters. Regularity is concerned with differentiability. In the Fourier domain the exist-
ence of derivatives is related to the decay of the Fourier spectra. For fixed support width
of  i.e. for fixed length of the filters in the associated subband coding scheme, the
choice with maximum vanishing moments for  is different from the maximum regu-
larity choice of . Antonini et al. [3] found that for wavelet coding, the regularity of the
reconstruction wavelet  is important in a wavelet compression scheme. For the same
number of vanishing moments for  the scheme with most regular  performs the best.
Increasing regularity of , even at the expense of the number of vanishing moments of

 performs better. For comparable regularity of  the scheme with the largest vanishing
moment for  is likely to perform best.

The situation is slightly different in a WP coding scheme but it still remains that if 
has k moments which are zero then the coefficients  will represent the fea-
tures of f which are k times differentiable with a high compression potential, many coef-
ficients will be close to zero. 

The smoothness of a wavelet is regarded as an important property. Since images are
mostly smooth except for occasional edges it is argued [3] that an exact reconstruction
subband coding schema for image analysis should correspond to an orthonormal basis
with a reasonably smooth mother wavelet. However, the frequency domain criteria such
as constraints on high frequency components, are less important to image compression
applications than time domain criteria such as ringing. 

The compact support of a filter kernel is vital to the time frequency resolution. It is
therefore important to have filters that are well localized in space (in time for time sig-
nals). The fact that the wavelet is not smooth, such as db4, does not exclude the represen-
tation of smooth functions. The right linear combination of these unsmooth wavelets is
very good for representing smooth functions as the irregularities cancel out. Compact and
unsmooth functions are efficient in representing functions with edges and other disconti-
nuities but smooth functions are not compact. 

During the years of the development of the wavelet theory new filters have appeared,
fullfilling the demands from the wavelet theory, and have given new life to older signal
processing algorithms. Below the filters used in the triplet database are presented. 

Haar wavelet is a compactly supported wavelet, the oldest and the simplest wavelet.
The scaling function = 1 on [0 1] and 0 otherwise. The wavelet function  = 1 on [0
0.5[ ,  = -1 on [0.5 1] and 0 otherwise. The Haar wavelet is orthogonal and symmetric
but not continuous. The number of vanishing moments for  is 1.

 In the group of orthogonal and compactly supported wavelets, the Daubechies wave-
let, symlets and coiflets reside. Their common properties are that  exists and the decom-
position is orthogonal,  and  are compactly supported and  has a given number of
vanishing moments. The regularity is poor.

Daubechies wavelets are compactly supported wavelets with extremal phase and a

α R

f̂ ω( ) 1 ω α+( ) ωd
∞–

∞

∫ ∞<

φ ψ ,
ψ

hn
ψ̃

ψ ψ̃
ψ̃

ψ ψ̃
ψ

ψ
ψm n, f >,<

φ ψ
ψ

ψ

φ
ψ φ ψ



Chapter 3 The Wavelet Packet Triplet Problem

56

high number of vanishing moments for a given support width. Associated scaling filter
is minimum-phase filter. For order N the support width is 2N-1, filter length is 2N, reg-
ularity about 0.2 N for large N. The wavelets are asymmetric and the number of vanishing
moments for  is N.

Symlets are compactly supported wavelets with least asymmetry and a high number
of vanishing moments for a given support width. The associated scaling filter is near lin-
ear-phase filter. For order N the support width is 2N-1, filter length is 2N. The filters are
nearly symmetric and the number of vanishing moments for  is N.

Coiflets are compactly supported nearly symmetric wavelets with high number of
vanishing moments for both  and  for a given support width. For order N the support
width is 6N-1 and filter length is 6N. The number of vanishing moments for  is 2N and
the number of vanishing moments for  is 2N-1.

The biorthogonal wavelets are compactly supported wavelet pairs constructed from
B-splines such that symmetry with FIR filters is achieved and desirable properties for de-
composition and reconstruction are achieved.  functions exist and the decomposition is
biorthogonal,  and  both for decomposition and reconstruction are compactly sup-
ported,  and  for decomposition have vanishing moments.  and  for reconstruc-
tion have known regularity. For order Nr, Nd (r for reconstruction, d for decomposition)
the support width is 2Nr+1 for reconstruction and 2Nd+1 for decomposition. Regularity
for the symmetric  reconstruction is Nr-1 and the number of vanishing moments for 
decomposition is Nr.

For the compactly supported biorthogonal spline wavelets symmetry and exact recon-
struction are possible with FIR filters while in the orthogonal case this is impossible ex-
cept for the Haar wavelet.

3.2.5  Measurements of filter effects
We test the performance of the best basis algorithm with a set of the first generation
wavelet filters. A listing of filter coefficients can be found in Appendix C. 

The filters tested here are Haar, db2, db4, db6, db8, bior1.5, bior2.8, bior3.5, bior6.8,
coif1, coif2, coif5, sym2, sym4, sym8, with respective vanishing moments, 1, 2, 4, 6, 8,
5, 8, 5, 8, 2, 4, 10, 2, 4, 8. The results for different combinations are shown in Appendix
B and in figures Figure 3.21 and Figure 3.22.

Only the decomposition part is considered here, the theoretically important factor is
vanishing moments for the decomposition wavelet. The regularity of the reconstruction
wavelet affects the image quality but not the compression ratio. When looking at the im-
ages in Figure 3.21, Figure 3.22, and in Appendix B, the vanishing moments do not seem
to be the important factor. In fact the performance of the WP coder gets worse with in-
creasing vanishing moments. The theory holds, in practice, only for the wavelet coder
with symlet filters. 

One explanation is that filtering with the wavelet filter gives large values for image
singularities. Most of the filtering in the WP decomposition is done on the detail images.
We need a wavelet with more vanishing moments than the numbers of continuous deriv-
atives of the signal for a good compression potential. However the detail bands are not
continuously differentiable. Thus we need not have more than one vanishing moment for
the wavelet on the detail bands. 

The cost functions in Equation 3.12, in Equation 3.13 and in Equation 3.14 give dif-
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ferent performance for the biorthogonal filters. However, the results are worse than the
wavelet tree by 0,5 to 5 bpp while the cost function in Equation 3.15, with p=1, follows
the wavelet performance more closely. The Haar filter always gives better performance
for the WP tree than for the wavelet tree but not necessarily the best performance of the
filters. For the wavelet coder the filters db6, bior2.8, coif5 and sym8 perform well with
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haar db2 db4 db6 db8 bior1.5 bior2.8 bior3.5 bior6.8 coif1 coif2 coif5 sym2 sym4 sym8

Figure 3.21. The cslfleath image decomposed with varying filters and the cost function n1. The 
cost of coding the components of the optimal wavelet packet basis is marked by o and the cost of 

coding the components of the corresponding wavelet basis is marked by x.
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Figure 3.22. The cslfleath image decomposed with varying filters and the cost function hest. The 
cost of coding the components of the best basis is marked by o and the cost of coding the 

components of the corresponding wavelet basis is marked by x.
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the brickwall image while the bior3.5 is outstanding for the other images. 
The symmetry of the decomposing wavelet is more important in a wavelet packet de-

composition than in a wavelet decomposition. In the wavelet decomposition only the lin-
ear phase of the scaling function matters since the repetition of decomposition is done
only on the approximation branch. Daubechies compactly supported wavelets have ex-
tremal phase and the highest number of vanishing moments for a given support width.
Only the associated scaling filters are minimum-phase filters. This makes them not as
suitable for WP decomposition. Symlets are least asymmetric and compactly supported
having the highest number of vanishing moments for a given support width with associ-
ated scaling filters near linear-phase making them a little bit more suitable. Both Daub-
echies compactly supported wavelets and Symlet wavelets have poor regularity. Coiflets
are orthonormal and nearly symmetric wavelets with vanishing moments for both  and

. They are much more symmetric than the compactly supported wavelets but at the
price of wider support. 

3.2.6  Conclusion
After analysing the result of combining 17 images, 9 cost functions and 15 different
wavelet filters in all possible ways we come to the conclusion that in the context of loss-
less image compression we are free to choose cost function by a criterion other than the
explicit cost of coding the components. The compression does not vary very much with
the choice of cost function. Almost none of the tested cost functions for choosing a basis
generally finds a basis better than the wavelet tree for all filters. 

The L1-norm and the L1.99-norm have been used as the cost function most likely to
match the Laplacian and the Gaussian probability distributions. We have used some
norms lying in between to see if any of them possibly match some generalized Gaussian
distribution. The main part of the subbands has a distribution very like the Laplacian.
There is very little difference in the performance with different values of the p parameter
in the Lp-norm. The best choice of cost function is the L1-norm. 

The bases chosen with the Haar filter and different cost functions all perform very
close to the wavelet basis performance. When the images are analysed with the bior1.5
filter, a difference of up to 3 bit/pixel between different cost functions is produced.

The fact that cascading of filters is done both on the approximation band and the detail
bands causes trouble in a wavelet packet decomposition with wavelet filters. The sym-
metry of the decomposing wavelet is more important in a wavelet packet decomposition
than in a wavelet decomposition where only the linear phase of the scaling function mat-
ters since the repetition of decomposition is done only on the approximation branch. Most
compactly supported wavelets have extremal phase and a high number of vanishing mo-
ments for a given support width. Only the associated scaling filters are minimum-phase
filters. This makes them not suitable for wavelet packet decomposition due to the cascad-
ing effects and, thus accumulated phase errors in the detail bands. Most of the filtering in
the wavelet packet decomposition is done on the detail images which are not continuous-
ly differentiable. We need a wavelet with more vanishing moments than the number of
continuous derivatives of the signal for a good compression potential. This means that we
need only one vanishing moment for the wavelet on the detail bands. The Haar wavelet
fulfills this demand.

The conclusion is that the choice of filter is important when we want to minimize the
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coding cost. The Haar filter gives the wavelet packet basis better performance in combi-
nation with almost all of the cost functions tested here. The Haar wavelet is the only real,
compactly supported, symmetric, linear phase wavelet that gives perfect reconstruction.
Indeed it is the only filter in this set suitable for wavelet packet transform for compres-
sion. 

3.3  Performance of the CWP coder
The CWP coder, described in section 2.3.4, is a wavelet packet coder that is based on the
SPIHT coder, presented in section 2.2.3, for the bit allocation and quantization step. CWP
uses a constrained WP tree because the SPIHT coder is designed for the wavelet tree and
the reordering algorithm cannot handle all possible WP trees. A suboptimal basis is cho-
sen as close to the best basis as possible. 

We use the CWP coder to show the effects of using an optimal basis compared to the
use of a suboptimal basis and also compared to the performance of the corresponding
wavelet coder. The coder is implemented with the use of the Haar filter and the n1 cost
function for the WP decomposition as this combination has given better coding perform-
ance than the corresponding wavelet coder with the same filter for all images tested in
section 3.2. In addition to the analysis in section 3.2, we here take the coding of the basis
itself into account. The final step of the SPIHT coder is not implemented. This step con-
sists of entropy coding of the bitstream. Thus we will get higher bitrates than published
results from using the SPIHT coder on the same images. Since we use the same coding
when comparing the different bases, this absence of the last coding step is expected to be
of minor importance. 
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Lenna
The above SPIHT wavelet coder and the CWP coder are both used to code the Lenna im-
age (512x512 pixels). Both coders use the Haar wavelet, decomposing to level 6. The
CWP uses n1 as cost function. Figure 3.23 shows the result. The suboptimal tree of the
CWP coder is seen in Figure 3.24. There are virtually no differences between the CWP
coder and the SPIHT coder. This is expected as the Lenna image contains mixed textures.
Thus the WP algorithm has no chance to find a common resonance in the image.

Figure 3.23. PSNR as a function of bpp for the Lenna images, * is wavelet coder and o is wavelet 
packet coder.

Figure 3.24. Left: the constrained tree used in the SPIHT coder, right: the unconstrained wavelet 
packet tree representing the best basis chosen for the actual triplet.
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Bark
Figure 3.25 shows the corresponding results for the Bark image. Only marginal difference
between the CWP coder and the SPIHT coder can be seen. Also for the bark image a con-
strained, suboptimal tree is used, similar to the wavelet tree in Figure 3.26. 

Figure 3.25. PSNR as a function of bpp for the bark images, * is wavelet coder and o is wavelet 
packet code

Figure 3.26. Left: the constrained tree used in the SPIHT coder, right: the unconstrained wavelet 
packet tree representing the best basis chosen for the actual triplet.
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Grass
The results in Figure 3.28 show the degradation in PSNR when coding the grass image.

Figure 3.27. To the left: grass coded with SPIHT at 0.7593 bpp, psnr=19.9694. To the right: grass 
coded with constrained CWP at 0.7499 bpp, psnr=20.1663.

Although the constrained tree for the grass image is not exactly the same as the best
basis tree the constrained tree is more similar to the best tree than to the wavelet tree and
captures most of the resonance (Figure 3.29). The visual structure is kept at lower bitrates
for the WP coder than for the wavelet coder, Figure 3.27. 

Figure 3.28. PSNR as a function of bpp for the grass images, * is wavelet coder and o is wavelet 
packet coder.
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Figure 3.29. Left: the constrained tree used in the CWP coder, right: the unconstrained wavelet 
packet tree representing the best basis chosen for the actual triplet.

Brickwall
Figure 3.34 shows the corresponding results for the brickwall image.

For the brickwall image the CWP coder uses the best basis (Figure 3.30). A clear dif-
ference is seen both visually and in the PSNR, Figure 3.34. The best basis captures the
resonance which is better represented by the CWP coder. From the reconstructed images
in Figure 3.31 to Figure 3.33 we see the different degradation in visual performance for
the SPIHT coder and for the CWP coder at low bitrates. The typical structure for the tex-
ture is kept longer for the WP coder.

Figure 3.30. left: the constrained tree used in the CWP coder, right: the unconstrained wavelet 
packet tree representing the best basis chosen for the actual triplet.
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Figure 3.31. To the left: brickwall coded with SPIHT at 0.1621 bpp, PSNR=23.9492. To the right: 
brickwall coded with constrained CWP at 0.1443 bpp, PSNR=24.3551.

Figure 3.32. To the left: brickwall coded with SPIHT at 0.0631 bpp, PSNR=22.0631. To the right: 
brickwall coded with constrained CWP at 0.0624 bpp, PSNR=22.7652

Figure 3.33. To the left: brickwall coded with SPIHT at 0.0215 bpp, PSNR=19.9064. To the right: 
brickwall coded with constrained CWP at 0.0274 bpp, PSNR=20.9682.
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Figure 3.34. PSNR as a function of bpp for the brickwall images, * is wavelet coder and + is 
wavelet packet coder.

3.3.1  Conclusion
We see that the visual performance as well as PSNR is better when we use an optimal ba-
sis rather than a suboptimal basis or a wavelet basis. When the CWP coder is required to
use a suboptimal basis the performance is only slightly better than the wavelet coder. All
CWP coded images have better quality than the SPIHT coded images. Also, visually the
CWP coder gives a better result.

3.3.2  Note on the choice of filter
The Haar filter yields poor reconstruction when used at low bitrates. The PSNR values
and the visual performance would definitely be much better with the use of another filter.
Why then do we use this filter? The careful reader has already noted some of the reasons
from the previous text in this thesis. From section 3.2.4 we note that the Haar filter has
the same behaviour for all the images, even if it is not the best filter. From section 3.2.5
we learned that the Haar wavelet is the only real, symmetric, linear phase wavelet for per-
fect reconstruction out of our set of filters. With this filter we do not need to care about
the phase distortion, which can be large for some other filters when cascading on the de-
tail coefficients, as the filters are designed only for cascading on the approximation coef-
ficients. Another reason is that we take advantage of the reconstruction distortion to see
the visual differences between the coders. 
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3.4  Calculated decision rule 
In this section we will deduce the decision rule analytically for simple image models, fil-
ter and cost function. We do this analysis in one dimension. The extension to two dimen-
sions is straightforward following the separable filtering. These rules are developed for a
Gaussian source, Laplacian source, and generalized Gaussian source.

3.4.1  System
We will view the image as a wide-sense stationary random process, X, with the autocor-
relation function . This function, given by Eq. 3.19), describes the time dependence
in the process. It is an ensemble mean taken over all realizations of the process (all im-
ages) and is defined by the expected value of the random process X at two different times

(3.19)

The deterministic autocorrelation  of a sequence  is a measure of the time de-
pendencies within the sequence of one image

(3.20)

where  denotes the inner product. In an ergodic [74] model this is expected to es-
timate the autocorrelation function. The estimate of the statistical autocorrelation func-
tion for a weak sense stationary sequence can also be computed by the inverse Fourier
transform of the periodogram.

Figure 3.35. Cost measurements before and after splitting.

The situation we want to analyse is described in Figure 3.35. We want to compare the
cost  of the result from highpass/lowpass filtering and downsampling a signal
to the cost  of the input signal. The subband is to be split if
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(3.21)

With the Haar filter we have 

(3.22)

(3.23)

(3.24)

(3.25)

By definition

(3.26)

we have the autocorrelation functions  and  by 

(3.27)

and

(3.28)

giving the variances as 

(3.29)

(3.30)

We choose as our first source model the correlations between neighbours described by the

Mz1
Mz2

+ Mx<

y1 n[ ] 1
2

------- x n[ ] x n 1–[ ]+( )=

y2 n[ ] 1
2

------- x n[ ] x– n 1–[ ]( )=

z1 n[ ] y1 2n[ ] 1
2

------- x 2n[ ] x 2n 1–[ ]+( )= =

z2 n[ ] y2 2n[ ] 1
2

------- x 2n[ ] x– 2n 1–[ ]( )= =

rx i[ ] E X k[ ]X k i–[ ]{ }=

rz1
k[ ] rz2

k[ ]

rz1
i[ ] E z1 k[ ]z1 k i–[ ]{ } 1

2--- 2rx 2i[ ] rx 2i 1+[ ] rx 2i 1–[ ]+ +( )= =

rz2
i[ ] E z2 k[ ]z2 k i–[ ]{ } 1

2--- 2rx 2i[ ] rx– 2i 1+[ ] rx– 2i 1–[ ]( )= =

σz1
rz1

0[ ] mz1

2– rx 0[ ] rx 1[ ] 2mx
2–+= =

σz2
rz2

0[ ] mz2
– rx 0[ ] rx– 1[ ]= =



Chapter 3 The Wavelet Packet Triplet Problem

68

autocorrelation function 

 , (3.31)

and secondly we use a Markov source model with autocorrelation function 

 . (3.32)

With these signal models we have the variances for both signal models:

(3.33)

(3.34)

This result is reasonable since the Haar filter only considers two neighbouring pixels.
The Haar filter makes no difference between the two models.

3.4.2  Applying the cost function
Applying the cost function  to the input signal x we get a cost measure 
of X

We are interested in the measure of the whole signal or subband, thus the cost func-
tion output , assuming that the cost function is additive, is given by

(3.35)

Apart from a normalization constant, depending on the signal size, this is the mean of
the signal under the influence of the cost function. This can be expressed by the expected
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value of a random process X representing our signal.

(3.36)

where p(x) is the probability density function.
One cost function that lends itself easily to analytic computation is the norm . For-

tunately, it has proven to work well together with the Haar filter as shown in section 3.2.
The cost associated with the input signal is given by

(3.37)

for a Gaussian distributed process, and 

(3.38)

for a Laplacian distributed process.
Following [54], we have an expression for the same integral with the generalized

Gaussian source (see Equation 3.9).

(3.39)

where α and β are extracted from the signal, for details see [23]. 
After filtering and subsampling we get the following expressions for the expected

costs for a Gaussian source.
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(3.41)

Splitting is done when

(3.42)

which leads us to the following decision rule for both the source models and a Gaussian
distribution

(3.43)

For mean values  , for  ranging from 0 to 1 and the variance  ranging from
0 to 100 the decision is to always split.

For the Laplacian distribution the decision rule for both source models is described by
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(3.47)

In Figure 3.36 we present plots of Equation 3.47 for  ranging from 0 to 1 and the
variance  ranging from 0 to 100, for different mean values . The black area de-
scribes for which values of  and  the band will be split. A mean value of 0 indicates
that a split is made. 

Figure 3.36. The decision rule plotted for a Laplacian process with different mean values, for  
between 0 and 1 and  between 0 and 100. The black area describes for which values of  and 

 the band will be split.

We have produced decision rules for the split/no-split decision to be applied to every
subband. These rules uses the autocorrelation function of the mother band to calculate the
effect of splitting the band without actually performing the split. This can be used both
top down in a greedy search and bottom up like the best basis search. For a typical image
where the mean is positive, the first level will be split. The approximation band will al-
ways have a positive mean value and is thereforee more likely to split than the detail
bands. This is probably the main reason why the wavelet decomposition comes so close
to the optimal solution. 

The brickwall image is one of the images with an autocorrelation function that does
not let itself be modelled by the image models used here. Grass, on the other hand, has an
autocorrelation function that better fits the models used in the calculations. With the as-
sumption that the approximation band always will be split, we will use the calculated de-
cision rules in a top down fashion on the grass image. The autocorrelation function for
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each subband, in both horizontal and vertical direction, is plotted together with the cor-
responding values of mean, variance and correlation coefficient in Figure 3.37. These
values are fed into the decision rules to achieve the second-level split. The calculated de-
cision rule for an image with a Gaussian pdf suggests to split every subband while the
decision rule for an image with a Laplacian pdf suggests to keep every subband. The truth
is probably somewhere in between and the decision rule for an image with a generalized
Gaussian pdf could be used. 

Figure 3.37. The first level decomposition of the Grass texture, with plots of the ACF and the 
values.

3.4.3  Conclusion
The calculated decision rule does not work with an image with an autocorrelation func-
tion that cannot be modelled by the image models used in the calculations, but could find
a basis for an image with a reasonable autocorrelation function. The Gaussian and Lapla-
cian pdf models used here are to the two extremes when modelling the amplitude distri-
bution of the image. Using the deneralized Gaussian can lead to a useful method for
taking the decision of split in a top-down manner, but this is left to future work.

3.5  Summary
This chapter deals with the problem of finding the basis that is best for representing the
image in a compression application. The focus is on the transform in contradiction to the
methods presented in Chapter 2. We start with an unbiased investigation of what happens
with the compression ratio when different images are wavelet packet analysed using
combinations of different filters and cost function. The compression ratio is estimated by
the entropy of the coefficient matrix. This is motivated by the assumption of a memory-
less source generating the image. This assumption is often used in the literature when try-
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ing to adapt methods to the image statistics only by taking the probability density function
into account. The results are discussed with respect to the properties of the filters and cost
functions used. One filter and one cost function are chosen and put into an implementa-
tion of a wavelet packet coder presented in Chapter 2. This is in order to view the effect
of using a basis which is optimal with respect to image, filter and cost function. 

Next we analytically calculate the decision rule based on a selection of filter and cost
function. The image is modelled by the spatial dependencies described by the autocorre-
lation function. The probability density function is set to be Gaussian or Laplacian but
could be adapted to the image by the use of the generalized Gaussian. 

We find that the choice of filter is more important to the compression performance
than the choice of cost function. Due to the cascaded filtering process applied on the detail
bands, the phase effects disqualify most wavelet filters for the wavelet packet use. The
needed number of vanishing moments of the filters depends on the differentiability of the
image. For the detail bands we do not need more than one vanishing moment. The Haar
filter is in fact the only filter out of our filter set that can be used, although it has poor
reconstruction performance. We also note that a wavelet packet basis is better than the
wavelet basis only when the optimal basis is used. Any sub-optimal basis, even close to
the optimal, gives performance close to that of a wavelet basis using the same filter. 
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Chapter 4

Discussion - Wavelet 
packet coding

The wavelet packet part of this thesis starts with a survey of different wavelet and wavelet
packet image coding methods that evolved over the years. Adelson and others provide a
start through pyramid image coding [1,2,12]. Even though the pyramid was created by a
low-pass filtering process by successive convolutions of the images with Gaussian-like
kernels, the difference between the resulting images was the equivalent to convolving the
image with an appropriately scaled Laplacian weighting function [1,2]. In [12] the theory
is expanded to including band-splitting transforms using quadrature mirror filters (QMF)
and Haar basis. The QMF approach was also treated by Woods & O'Neil [94], in which
the expansion to the multi-dimensional subband coding of [89] to image subband coding
appeared. With Mallat [54,55] the connection between the Laplacian pyramid image cod-
ing, subband coding and wavelet theory [20,21] was established. 

Many ideas evolved for signal analysis and image processing applications such as im-
age coding. The wavelet packet transform [16,17] which was a natural extension of the
wavelet analysis was applied to images in [92]. Herley et al.'s work [32,33] on tilings of
the time frequency plane to adapt the wavelet packet basis to time varying structures was
applied to images in [34], and further developed to joint dual double trees in [82]. The lat-
ter method can tile the time frequency plane in ways that the wavelet packet method can-
not and thus can reach a more efficient decomposition of the signal. Ramchandran et al.
extended this [71]. While these tiling are still rectangular, another approach was taken by
Baraniuk & Jones [5,6] with the introduction of the chirplet transform which gives non-
rectangular tilings of the time frequency plane. 

Recently the multiwavelet and multiwavelet packets were introduced in image com-
pression applications [57]. These methods use more than one scaling function and wavelet
function to reach better results. 

Apparently there are many variations on the theme of finding the best representation.
In this part we concentrated on the wavelet packet transform and dissect the problems of
the method that affects the result and which cannot be solved by the extensions described
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above. 
The wavelet compression methods have developed into use in standards while the

wavelet packet algorithms still struggle with problems. Understanding the Triplet Prob-
lem, treated in Chapter 3, is essential for the development of the wavelet packet methods.
Almost everyone using wavelet packet methods refers to the fact that the wavelet packet
transform is better than the wavelet transform on images with high spatial frequency pat-
terns, such as the Barbara image (in Figure 5.38). This is true to some degree. It was early
noted [15] that the wavelet packet transform can only represent the resonance in the im-
age. A high spatial frequency pattern is a resonance and the Barbara image is full of that,
with different orientation. Each orientation of this pattern generates a different wavelet
packet basis when the algorithm is applied on the pure pattern. The Barbara image is, as
most natural images, a mixture of different spatial frequency patterns, or textures, and
thus, the wavelet packet transform fails to find the very best representation for the image
by one basis alone. However, this particular image contains textures similar enough to
make the wavelet packet transform outperform the wavelet transform and the image is a
popular choice for the testing of wavelet packet image compression algorithms.

The problem how to decompose different parts of an image differently was treated by
[34] and [82] as discussed above. In the wavelet part of this thesis the work ignore this
problem and is concentrated on pure texture images. The problem of proper choice of fil-
ter and cost function still remains and this is treated in this thesis. The reviewed algo-
rithms presented in Chapter 2 are typical in the sense that they focus on the quantization,
bit allocation, and entropy coding steps of the coding chain shown in Figure 1.10. The
problem of choosing the basis is often not treated. In the wavelet case one can argue that
the basis is fixed but the coding result change with the choice of filters. Most wavelet
packet image coding algorithms use wavelet filters without any motivation other than
that it is a good filter for wavelet image coding. In this thesis we have shown experimen-
tally the effects of using wavelet filters in both wavelet and wavelet packet coding of tex-
ture images. The wavelet filters are designed for iterative use only on the low-pass part
of the signal. Only the low-pass filter corresponding to the scaling function has properties
appropriate for cascading the filters. When using the high-pass filter corresponding to the
wavelet in a cascading manner, errors are easily introduced in the image. The filters treat-
ed in this thesis are the first generation wavelet filters. Using these are sufficient to show
the differences between the wavelet transform and the wavelet packet transform regard-
ing the needs for proper filters. We find that the choice of filter is more important to the
compression performance than the choice of cost function. Due to the cascaded filtering
process applied on the detail bands, the phase effects disqualify most of the filters for
wavelet packet use. For the detail bands we do not need more than one vanishing mo-
ment. The Haar filter is in fact the only filter out of our test set that can be used, although
it has poor reconstruction performance. 

The focus of the first part of this thesis has been to understand the behaviour of the
wavelet packet transform rather than finding a new good filter set. However, an embryo
of basic criteria for such a filter set is outlined in that both low-pass and high-pass filter
should be linear phase filters and the decomposing filter set can be Haar-like while the
reconstruction filter set needs to be smoother. 

For the wavelet packet case the bases become totally different depending on the im-
age, the choice of filter, and the choice of cost function. When using a proper filter set,
like Haar, we found that the choice of cost function is of minor importance for the com-
pression result. The choice of cost function in a wavelet packet application is treated in
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[84,85] for speech compression where they examine additive and non-additive cost func-
tions in both top-down and bottom-up search approaches and present a near-best basis se-
lection algorithm. The work is very interesting due to its extensive examination of cost
functions in different basis search algorithms and their conclusion that the choice of cost
function has significant impact on the result in both time-frequency analysis and com-
pression. However, they used filters which were optimal for the wavelet transform, and
thus the result of their work is not valid for our evaluation of the wavelet packet trans-
form. 

The best basis method of [17] is a bottom-up search algorithm often stated to find the
global optimal basis. This method decomposes the image down to some level and applies
the cost function on the nodes from the bottom up to decide whether or not to cut the tree
at this node. However, we have found in this thesis that the best basis method finds dif-
ferent bases when the image is decomposed to different levels. 

In this thesis a method of analytic calculation of the expected basis has been present-
ed. The method uses the analytic expression of the cost function, the filter parameters and
the image statistics by means of two different models for the pixel interdependencies de-
scribed by the autocorrelation function. This is an approach that differs from using the im-
age or subband histogram only as in [11] for example. The memory free assumption is
used in most wavelet coding algorithm, including the best basis algorithm, when the his-
togram is used for approximation of the probability function. When the image is modelled
by its spatial dependencies described by the autocorrelation function we are taking the
memory of the source into account. This is to take the wavelet packet coding algorithms
one step further towards a useful algorithm.

The examination of wavelet packet methods in this thesis demonstrates the difficulties
to utilize these methods for improved image coding. The potential seems to be there, how-
ever, it has to be admitted that the problem is not yet solved.
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Chapter 5

Empirical Mode 
Decomposition 

The wavelet packet algorithms treated in previous chapters search for the resonance in the
signal. One of the purposes for the thorough examination of the algorithms was to find out
if the wavelet packet decomposition could serve as the totally adaptive decomposition for
any signal. The limitations due to filters and cost functions in combination with different
signals made this difficult. The totally different approach of the Empirical Mode Decom-
position (EMD) was revealed in [36]. EMD is an adaptive decomposition with which any
complicated signal can be decomposed into its Intrinsic Mode Functions (IMF). EMD is
an analysis method that in many aspects gives a better understanding of the physics be-
hind the signals. Because of its ability to describe short time changes in frequencies that
can not be resolved by Fourier spectral analysis it can be used for nonlinear and non-sta-
tionary time series analysis. For the IMF we can have a well-defined instantaneous fre-
quency. The original purpose for the EMD was to find a decomposition which made it
possible to use the instantaneous frequency for time-frequency analysis of non-stationary
signals. In this method we found the totally adaptive signal decomposition we had been
looking for and we expanded the concept of EMD to two dimensions for image analysis
and compression purposes [51].

This chapter is devoted to understanding EMD in both one and two dimensions. We
explain the algorithms and put the focus on different limitations initialized by different
implementation methods.

This chapter begins with a review of the EMD applied to time signals. Previous work
often mentions the lack of a mathematical formalism to describe the EMD. The concept
is truly empirical. In this work we keep the empirical approach as we expand the method
to two-dimensional signals, such as images. Some implementations of the EMD in two
dimensions generate a residue with many extrema points. We will give an example of such
an implementation and explain its drawbacks. In this chapter we also present an improved
method that can decompose the image into a number of IMFs and a residue with none, or
with only a few extrema points. This method makes it possible to use the EMD for image
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processing. We introduce the concept of empiquency, short for empirical mode frequen-
cy, to describe the signal oscillations as the traditional frequency concept is not applicable
in this context. We also discuss the selection of significant extrema points as a tool for
noise reduction. 

5.1  EMD for time signals
The EMD is an adaptive decomposition with which any complicated signal can be de-
composed into a redundant set of signals denoted IMF and a residue. Adding all the IMFs
together with the residue reconstructs the original signal without information loss or dis-
tortion.

An IMF is characterized by some specific properties. One is that the number of zero
crossings and the number of extrema points are equal or differs only by one. Another
property of the IMF is that the envelopes defined by the local maxima and minima, re-
spectively, are locally symmetric around the envelope mean. The original purpose for the
EMD was to find a decomposition which made it possible to use the instantaneous fre-
quency, defined as the derivative of the phase of an analytic signal, in the time frequency
analysis of the signal [36]. Traditional Fourier analysis does not allow a signal's spectrum
to change over time. The EMD, however, provides a decomposition method that analyses
the signal locally and separates the component holding locally the highest empiquency
(see section 5.1.4), from the rest into a separate IMF. Within this IMF both high and low
empiquencies can coexist at different times. The key word is locally.

In this thesis the Hilbert-Huang Transform is presented in an example for the intro-
duction of the EMD of time signals, and as the origin of EMD. We then leave the HHT
and develop the EMD concept further in the time domain and image domain for compres-
sion purpose.

5.1.1  Time-frequency analysis with Hilbert-Huang 
Transform (HHT)
Many methods exist which analyse signals simultaneously in the time- and frequency-
domain, wavelets [56] and short-time Fourier transform [14], among others. These meth-
ods are based on the expansion of the signal into a set of basis functions where the basis
functions are defined by the method. The concept of the EMD is to expand the signal into
a set of functions defined by the signal itself, the IMFs. Signal adaptive decomposition
by means of Principal Component Analysis (PCA) [29] also expands the signal into a ba-
sis defined by the signal itself. The PCA differs from EMD in that it is based on the signal
statistics, while EMD is deterministic and is based on local properties. The EMD process
allows time-frequency analysis of transient signals for which Fourier based methods have
been unsuccessful. Whenever we use the Fourier transform to represent frequencies we
are limited by the uncertainty principle. For infinite signal length we can get exact infor-
mation about the frequencies in the signal, but when we restrict ourselves to analyse a
signal of finite length there is a bound on the precision of the frequencies that we can de-
tect. The instantaneous frequency represents the frequency of the signal at one time, with-
out any information about the signal at other times. There exist different definitions for
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instantaneous frequency; a common one is to use the derivative of the phase of the signal
as described in [36]. Another problem with using the instantaneous frequency is that it
only provides one value at each time. A signal usually consists of many intrinsic frequen-
cies and this is where the EMD is used, to decompose the signal into its IMF, where only
one frequency component is present at each time so that a well-defined instantaneous fre-
quency can be conputed.

A relatively new technique has been developed to perform general analysis of highly
transient time-domain signals, called the Hilbert-Huang Transform (HHT) [36]. It has
shown great utility in time-frequency analysis of dispersive, nonlinear, or non-stationary
signals and systems. The transform uses the EMD, with which the signal is decomposed
into a redundant set of IMFs and a residue. By applying the Hilbert transform to each IMF
we get a set of analytical signals representing the input signal. The HHT calculates the
instantaneous frequency of each transformed IMF and presents the result as a time-fre-
quency analysis in a Hilbert spectrum plot. Time-frequency analysis by means of HHT,
or EMD separately, has been done in several areas, such as analysis of ocean waves, seis-
mology, and one-dimensional analysis of SAR images [36,88,37]. In a study of laser vi-
brometry data for target classification, the HHT outperforms wavelet analysis and the
power spectral density method [61].

Example 5.1. We create a composite chirp by adding together a 2-second long linearly
increasing chirp ranging from DC to 300 Hz with a "convex" quadratic chirp of duration
1 second which starts at 25 Hz and increases to 100 Hz, and a "concave" quadratic chirp
of duration 1 second which starts at 100 Hz and decreases to 25Hz. The resulting signal
is sampled at 1 kHz and is shown in Figure 5.1

Figure 5.2 shows the time frequency plot of the composite chirp signal by the win-
dowed Fourier transform to the left and the corresponding plot of a wavelet packet best
basis decomposition of the same signal to the right.

Figure 5.1. Time plot of the composite chirp test signal.
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Figure 5.2. Time-frequency plot of the composite chirp signal by the windowed Fourier transform 
to the left and the corresponding plot of the wavelet packet best basis decomposition of the same 

signal to the right.

Figure 5.3. The Hilbert spectrum of the composite chirp signal.

The Hilbert spectrum of the test signal is shown in Figure 5.3. It is composed by
Hilbert spectra of each IMF of the composite chirp signal shown in Figure 5.15.

Both the short-time Fourier transform and the wavelet packet best basis representa-
tions suffer from the uncertainty principle. In the left plot in Figure 5.2 the signal re-
sponse is smeared along the frequency axis as a result of the narrow time window and
hence a broad frequency window used to analyse the signal. On the right side of
Figure 5.2 the wavelet packet best basis representation is plotted. Here all the small boxes
are of the same area and the grayscale indicates the correlation between the signal and the
analysis filter associated with the box: white indicates high correlation and black indi-
cates low correlation. The form and position of the box is dictated by the best basis search
algorithm originally described in [17].
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The Hilbert spectrum is plotted against the time axis in Figure 5.3, and it shows not
only the inter frequencies generated by the construction of the signal, but also the intra
frequencies which come from the change of curve form by the frequency change and the
addition of signals. This is an advantage with the EMD compared to Fourier methods as
it offers more features for the analysis of the signal. Artifacts are also introduced by the
use of sampled signals. 

5.1.2  Sifting process for finding the IMF
The sifting process to find the IMFs is introduced in [36]. We describe and picture it by a
very simple test signal denoted by . It is constructed by the addition of two sine curves
and a slowly varying trend, and is visualized by the green curve in Figure 5.4 (a). 

To find the first IMF, start with the image itself as input signal . The
first index is the IMF number, l=1..L, and the second index is the iteration number,
k=1..K, in the sifting process. To find the next IMF, use the residue corresponding to the
previously found IMF as input signal .

The sifting process to find the IMFs of a signal x(t), comprises the following steps:
(1) Find the positions and amplitudes of all local maxima, and find the positions and

amplitudes of all local minima in the input signal . These are marked by red and
blue dots respectively in Figure 5.4(a)

(2) Create the upper envelope by spline interpolation of the local maxima and the low-
er envelope by spline interpolation of the local minima, denoted  and .
These are shown as the red and blue curves in Figure 5.4(b). Cubic spline is used in this
example.

(3) For each time instant t, calculate the mean of the upper envelope and the lower en-
velope.

(5.1)

This signal  is referred to as the envelope mean and is shown as the black line
in Figure 5.4(b), (c), and (d).

(4) Subtract the envelope mean signal from the input signal (black in Figure 5.4(b)
from green in Figure 5.4(b)), yielding the results illustrated by green in Figure 5.4(c).

(5.2)

This is one iteration of the sifting process. The next step is to check if the signal
 from step (4) is an IMF or not. In the original work [36] the sifting process stops

when the difference between two consecutive siftings is smaller than a selected threshold
ε. In this thesis the process stops when the envelope mean signal is close enough to zero,
as suggested in [51]. 

(5.3)

x t( )
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The reason for this choice is that forcing the envelope mean to zero will guarantee the
symmetry of the envelope and the correct relation between the number of zero crossings
and number of extremes that define the IMF. A slightly more complicated version of this
stop criteria is presented in [73], along with a discussion of typical threshold values. 

(5) Check if the mean signal is close enough to zero, based upon the stop criterion. If
not, iterate by repeating the process from step (1) with the resulting signal from step 4 as
the input signal a sufficient number of times.

(5.4)

Figure 5.4. a: The test signal with the local maxima marked by red dots and the local minima 
marked by blue dots. b: The test signal with upper envelope in red, lower envelope in blue and the 

envelope mean in black. c: The result of one iteration in the IMF sifting process with the upper 
and lower envelope in red and blue and their mean in black. d: The resulting first IMF with the 

upper and lower envelope and their mean. e and f: Iteration for the second IMF.

inl k 1+( ) t( ) hlk t( )=
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When the stop criterion is met, k=K, the IMF is defined as the last result from (4).

(5.5)

After the IMF  is found, (here illustrated by the green curve in Figure 5.4(d)),
define the residue  as the result of subtracting this IMF from the input signal.

(5.6)

The residue is illustrated by the green curve in Figure 5.4(e).
(6) The next IMF is found by starting over from step 1, now with the residue as the

input signal.

(5.7)

The second IMF is illustrated in Figure 5.4(f).
Steps (1) to (6) can be repeated for all the subsequent . The EMD is completed when

the residue, ideally, does not contain any extrema points. This means that it is either a con-
stant or a monotonic function. The signal can be expressed as the sum of IMFs and the
last residue

(5.8)

The first IMF captures the highest empiquency in the signal as a function of time. The
range of empiquencies contained in the IMFs varies over time but the first IMF always
contains the locally highest one in the signal.

Example 5.2. We show the sifting process with a slightly more complicated signal de-
fined by Equation 5.9 and plotted in Figure 5.5. 

cl t( ) hlK t( )=

cl t( )
rl t( )

rl t( ) inl1 t( ) cl t( )–=

in l 1+( )1 t( ) rl t( )=

rj

x t( ) rL t( ) cj t( )
j 1=

L

∑+=

Figure 5.5. Plot of the test signal in Equation 5.9. 
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(5.9)

The signal has different frequency components in different parts. In the first two
thirds of the signal the component of the highest frequency is , while in the last
third of the signal the component of the highest frequency is . This is also the
result of the sifting for the first IMF shown in Figure 5.6. The start of the sifting with first
upper and lower envelope is shown in Figure 5.6 (a) and result from subsequent iterations
is presented in Figure 5.6 (b-f).

The first IMF is shown in Figure 5.6 (f) and is a signal very similar to the signal given
by Equation 5.10.

(5.10)

The sifting for the second IMF is presented in Figure 5.7 in the same manner as the
sifting for the first IMF is presented in Figure 5.6. The result should, in theory, give us
the signal given by Equation 5.11 if we were concerned with only the inter frequency
components in the signal. Due to the limitations of the implementation, further discussed
in section 5.1.3, and the fact that different signal components influence each other and
produce intra frequency effects in the signal, we have another result, shown in Figure 5.7. 

(5.11)

Figure 5.6. Iteration for the first IMF. 
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Figure 5.7. Iteration for the second IMF.

The lowest frequency component used in the composition of the test signal appears in
the sifting for the third IMF, Figure 5.8, the next IMFs holds rest signals, Figure 5.9 to
Figure 5.12, and the residue is a monotonic signal shown in Figure 5.13. 

Figure 5.8. Iteration for the third IMF.

Figure 5.9. Iteration for the fourth IMF.
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Figure 5.10. Iteration for the fifth IMF.

Figure 5.11. Iteration for the sixth IMF.

Figure 5.12. Iteration for the seventh IMF.

Figure 5.13. Iteration for the eighth IMF and the residue.



5.1 EMD for time signals

91

Example 5.3. When we use the composite chirp test signal from Example 5.1 in
section 5.1.1, the result of the sifting for the first IMF is shown in Figure 5.14. 

The composite chirp is shown in Figure 5.14 (a) and the result of one iteration in the IMF
sifting process is shown in Figure 5.14 (b) in yellow with the upper envelope in red and
the lower envelope in blue; their mean is shown in black. The resulting first IMF with the
upper and lower envelope and their mean is shown in Figure 5.14 (c). In the latter case
the envelopes are symmetric around their mean which is close to zero.

In Figure 5.15 the IMFs of the composite chirp signal are plotted together with their
respective HHT. This shows the frequency separation capability of the EMD. The highest
frequencies of the signal are represented by the first IMF while the next highest frequen-
cies are represented by the second IMF etc. The EMD does not separate the signal into its
original components.
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Figure 5.14. a) The composite chirp, b) the result of one iteration in the IMF sifting process with 
the upper and lower envelope and their mean plotted in the same figure, c) the resulting first IMF 
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5.1.3  Interpolation methods
The interpolation to produce envelopes from the extrema points can be done in different
ways. The work done in [36] states that spline interpolation should be used. We here use
piecewise cubic spline interpolation and piecewise cubic Hermite interpolation. These
methods produce slightly different EMD results. The two interpolation methods are both
splines but of different degrees.

On each subinterval , let P(x) be the interpolant to the given values
and certain slopes at the two end points. Between any two neighbouring data sites x(k)
and x(k+1), x(t) is a polynomial. Neighbouring polynomials match in value, first, and
second derivative, across their common data site.

Figure 5.15. The first IMFs and the residue for the composite chirp (left) and their 
respective HHT (right).

x t( ), k t k 1+≤ ≤
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For piecewise cubic Hermite interpolation [44], the interpolator is denoted Pp(x). The
first derivative, Pp'(x), is continuous, but Pp''(x) is not necessarily continuous. The slopes
at the x(k) are chosen in such a way that Pp(x) is shape preserving and respects monoto-
nicity. This means that, on intervals where the data are monotonic, so is Pp(x), and at
points where the data have a local extremum, so does Pp(x): overshoots does not exist.
The function Ps(x) supplied by the piecewise cubic spline interpolation is constructed
such that the slopes at the x(k) are chosen to make Ps''(x) continuous also. This makes
Ps(x) smoother and more accurate if the data are values of a smooth function.  The effects
of using linear interpolation, cubic Hermite interpolation, and cubic spline interpolation
on regularly spaced data are shown in Figure 5.16. Note that in Figure 5.16 (b) the data
points are no longer the extrema points of the interpolated signal. The interpolation has
produced overshoots in order to achieve the continuous second derivative. These effects
introduce new extrema points that may not have been present in the original signal or
move the extrema point to another location.

The EMD involves the interpolation of irregularly spaced data. It is preferred that
these stay as extrema points. Linear interpolation, cubic Hermite interpolation, and cubic
spline interpolation on irregularly spaced data are shown in Figure 5.17. Only linear in-
terpolation and cubic Hermite interpolation keep the extrema points in place. These ef-
fects are further treated in the examples.

Using the cubic spline interpolation method is good when decomposing signals, but
at the same time it introduces new higher frequencies at false positions in longer periods
of very low frequencies present in a surrounding of higher frequencies. This is shown in
the Example 5.4 where the test signal from Example 5.2 is used, only modified such that
the middle part is set to zero, Equation 5.12. 

Figure 5.17. l = linear interpolation, s = piecewise cubic spline interpolation, p = piecewise cubic 
Hermite interpolation of scattered data points.
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Figure 5.16. a) linear interpolation, b) piecewise cubic spline interpolation, c) piecewise cubic 
Hermite interpolation of regular data points.
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Example 5.4. The test signal is plotted in Figure 5.18. The result of using the cubic
spline interpolation method is shown in Figure 5.19 in the sifting for the first IMF and
Figure 5.20 in the sifting for the second IMF. The cubic Hermite interpolation does not
introduce any new frequencies for the same case, shown in Figure 5.21 in the sifting for
the first IMF and Figure 5.22 in the sifting for the second IMF, but to the cost of slower
convergence of the sifting process and a larger amount of IMFs found for the same value
on the stop criteria. When the cubic spline interpolation method is used the sifting intro-
duces new frequency components in the zero zone, but the cubic spline interpolation
method is recommended for most "normal" signals.

(5.12)

Figure 5.19. Iteration for first cubic IMF.
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Figure 5.18. Test signal.
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Figure 5.20. Iteration for second cubic IMF.

Figure 5.21. Iteration for first Hermitian IMF.

Figure 5.22. Iteration for second Hermitian IMF.
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Example 5.5. To further examine the cubic spline interpolation and the cubic Hermite
interpolation, we use a test signal composed of two different sinuoids. We apply both in-
terpolation methods and look at the frequency separation capability of the EMD. The test
signal 

(5.13)

is plotted in Figure 5.23. The signal is simple and pure, both methods separate the first
two IMF as signals that look similar to the input signal components. In Figure 5.24 (a)
the signal component of the highest frequency is plotted, in Figure 5.24 (b) the first cubic
Hermite interpolation IMF is plotted and in Figure 5.24 (c) their difference is plotted. The
same is done for the second cubic Hermite interpolation IMF in Figure 5.25(b), which is
compared to the signal component of the next highest frequency, plotted in
Figure 5.25(a). Their difference is plotted in Figure 5.25 (c). The error is approximately
5% of the signal amplitude in the centre of the signal where the edge effects do not affect
the signal. 

Figure 5.24. a) sin(6πt), b) first Hermitian IMF, c) Their difference.
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Figure 5.23. Test Signal
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Figure 5.25. a) sin(2πt), b) second Hermitian IMF, c) Their difference.

When we do the same for the cubic spline method we have a better performance. In
Figure 5.26 (a) the signal component of the highest frequency is plotted, in Figure 5.26
(b) the first cubic spline interpolation IMF is plotted and in Figure 5.26 (c) their differ-
ence is plotted. The same is done for the second cubic spline interpolation IMF in
Figure 5.27 (b), which is compared to the signal component of the next highest frequency,
plotted in Figure 5.27 (a). Their difference is plotted in Figure 5.27 (c). The error is ap-
proximately zero in the central region. 

Figure 5.26. a) sin(6πt), b) first cubic IMF, c) Their difference.

Figure 5.27. a) sin(2πt), b) second cubic IMF, c) Their difference

The cubic spline interpolation has worse behaviour at the edges than cubic Hermite
interpolation due to the treatment of edge points. No effort is made on this subject in this
work, some solutions to the edge problem for time signals can be found in [36].
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5.1.4  Empiquency
The EMD is a truly empirical method, not based on the Fourier frequency approach but,
as we will see, related to the locations of extrema points and zero crossings. Based on this
we use the concept of empiquency [53], short for empirical mode frequency, instead of a
traditional Fourier-based frequency measure to describe the signal oscillations. Let d be
the distance between two neighbouring extrema points. In [36] the concept of time scale
is presented. It can be seen as the mean of all d in the signal. In this context the empiquen-
cy is the local time scale. The measure of empiquency is defined as “One half the recip-
rocal distance between two consecutive extrema points”:

(5.14)

The empiquency value  is assigned to every position between the respective ex-
trema points. Each extrema point influences more than one empiquency definition; we let
it take the highest value of the two empiquency values it defines. 

The empiquency is accompanied by an amplitude describing the signal at the actual
position. At each extrema point the empiquency amplitude Ae is the absolute value of the
extrema point. At all other positions, the empiquency amplitude takes the value of the ab-
solute mean of the extrema points that define the empiquency for the actual position.

Thus, 

(5.15)

where a and b are values of neighbouring extrema points. 
The very special properties of the IMFs are that these are locally zero mean and ide-

ally do not have more than one extrema point between two neighbouring zero crossings.
Because of this relationship between zero-crossings and extrema points there is also a re-
lation between the empiquency and the concept of sequency. Sequency is defined as “the
average number of zero crossings per second divided by 2” [31]. For a sine or cosine the
frequency and the sequency is the same, but the concept of sequency has a meaning for
other signals such as Walsh functions or IMFs as well.

Example 5.6. Maximum empiquency within a signal segment is found by examining
the space between the extrema points. Figure 5.28 and Figure 5.29 show two discrete
time signals, both with the properties of an IMF but with different maximum empiquen-
cy, (0.5, in a normalized scale, for the signal in Figure 5.28 and 0.167 for the signal in
Figure 5.29). Later on we will assume that a signal like the one in Figure 5.29 can be re-
constructed with low distortion from a subsampled version, while a signal example like
the one in Figure 5.28 needs every sample to be represented without distortion due to its
high maximum empiquency.

fe
1

2d------=

fe

Ae p )( )
a if p is an extrema point

a b+
2------------------ if p   is not an extrema points







=



5.1 EMD for time signals

99

Figure 5.28. A discrete time signal with its three extrema points marked x for local maxima and o 
for local minima. Maximum empiquency 0.5.

Figure 5.29. A discrete time signal with its three extrema points marked x for local maxima and o 
for local minima. Maximum empiquency 0.167.

5.1.5  EMD of noise
The behaviour of the EMD as a filter bank is highlighted in [26] through the analysis of
noise. We review this work with an example using the cubic spline interpolation. The test
signal used is white Gaussian noise with a variance of 1. The result from the EMD is
shown in Figure 5.30 (a-y). The images in the left column show the time signal IMF and
the middle column shows the fast Fourier transform (FFT) of the corresponding IMF. In
Figure 5.30(b), (d), (f), (h), the spectrum density plot shows the whole result and thus the
negative frequency components appear in the right half of the plot. The rest of the fre-
quency plots show only positive frequency components in a zoomed view. The test signal
is shown in Figure 5.30 (a) and its power spectra by means of the FFT of the signal is
shown in Figure 5.30 (b). The first IMF show a “high-pass filtered” noise signal in
Figure 5.30 (c) and Figure 5.30 (d). The rest of the IMFs show “band-bass filtered” noise
signals with their centre frequency fc decreasing in an octave band manner, just like a fil-
ter bank. This experiment shows that the EMD sorts the frequency content of a noise sig-
nal in the same way as it sorts any other signal. We should have this in mind when treating
noisy signals. It is sometimes assumed that the noise of a signal is totally contained in the
first IMF, an assumption that obviously, from this example, is not true. 
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zero mean Gaussian
noise,
variance1

first IMF,
variance 0.5750
centre frequency
fc=5000Hz

Second IMF
variance 0.2117 
centre frequency
fc=2500Hz

Third IMF
variance 0.1225
centre frequency
fc=1250 Hz

Fourth IMF
variance 0.0742
centre frequency
fc=500Hz

Fifth IMF
variance 0.0545
centre frequency
fc=250Hz
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Sixth IMF
var(c6)=0.0230
fc=160Hz

Seventh IMF
var(c7)=0.0181
fc=80Hz

Eighth IMF
var(c8)=0.0158
fc=40Hz

Nineth IMF
var(c9)=0.0189
fc=20Hz

Tenth IMF
var(c10)=0.0016
fc=15Hz

Tenth residue
var(res10)=0.0233
fc=10Hz

Figure 5.30. EMD of gaussian nose. Time plot of the IMF to the left, the spectral density from 
FFT of the IMF in the middle and specifications for the IMF to the right.
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5.1.6  Conclusion
The concept of empiquency is new and is useful to describe time signals and, as will be
seen later in this thesis, also when EMD is applied to images. HHT is suitable for time-
frequency analysis. The performance depends on the interpolation method and its imple-
mentation. Cubic spline interpolation is probably the best interpolation method for EMD
of time signals despite its drawbacks. This is an area where more work is needed, but this
is not the focus of this thesis. The number of IMFs achieved with the EMD depends also
on the choice of stop criterion value. If it is too large the number of IMFs is not large
enough to make the empiquency separation complete. If it is too small the empiquency
separation completes but computation time is longer than necessary.

5.2  EMD of two-dimensional signals
HHT, the EMD-based time-frequency analysis, presented in section 5.1.1, is only one of
many applications made possible by the use of EMD. In the two-dimensional case, where
adaptive spatial frequency separation presents a challenge, the EMD enables many new
approaches for image processing applications.

The results and ideas in time domain applications using the EMD technique apply to
two-dimensional signals, such as images, as well. Similarly to the one-dimensional
EMD, the first IMF extracts the locally highest spatial empiquencies in the image while
the second IMF holds the locally next highest spatial empiquencies, etc. The EMD in two
dimensions provides a tool for image processing by its special ability to locally separate
spatial frequencies that build texture. Assume that a texture consists of a superposition of
a number of spatial frequency patterns. At each spatial position the texture is a result of
the superposition of different spatial frequencies. The EMD sorts the spatial frequency
components into a set of IMFs where the highest spatial frequency component of each
spatial position is in the first IMF and the next highest spatial frequency component of
each spatial position is in the second IMF, etc.

The use of the Hilbert transform for the creation of analytic signals in two dimensions
is made possible by the introduction of a direction of reference in the Fourier domain
[30], but will not be further treated in this thesis. In the two-dimensional EMD, the sym-
metry criterion on the IMF envelopes is relaxed. The stop criterion is based on the con-
dition that the IMF envelope mean must be close enough to zero. This guarantees that we
will find the IMF without actually checking for symmetric envelopes. 

Other work on EMD in two dimensions typically generates a residue with many ex-
trema points. In this chapter we propose an improved method to decompose an image into
a number of IMFs and a residue image with a minimum number of extrema points.

The extension of the EMD to two dimensions relies on proper spline interpolation in
two dimensions. The edge constraints are important, as the errors introduced there
traverse into the image. The IMFs can be seen as spatial frequency subbands, with vari-
ous centre frequency and bandwidth along the signal. Within each IMF both high and low
empiquencies can coexist at different locations. The key word still is locally.
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5.2.1  Sifting for the two-dimensional IMF
The sifting process for the IMF is here extended to two dimensional signals.

To find the first IMF, start with the image itself as input signal
. The first index is the IMF number, l=1..L, and the second index

is the iteration number, k=1..K, in the sifting process. m and n represent the two spatial
dimensions. To find the next IMF, use the residue corresponding to the previously found
IMF as input signal .

The sifting process to find the IMFs of a signal x(m,n), comprises the following steps:
(1) Find the positions and amplitudes of all local maxima, and find the positions and

amplitudes of all local minima in the input signal .
(2) Create the upper envelope by spline interpolation of the local maxima and the low-

er envelope by spline interpolation of the local minima. Denote the envelopes 
and . respectively.

(3) For each position (m,n), calculate the mean of the upper envelope and the lower
envelope.

(5.16)

The signal  is referred to as the envelope mean.
(4) Subtract the envelope mean signal from the input signal

(5.17)

This is one iteration of the sifting process. The next step is to check if the signal
 from step 4 is an IMF or not. The process stops when the envelope mean signal

is close enough to zero.

(5.18)

In the same way as for time signals, forcing the envelope mean to zero will give us the
wanted symmetry of the envelope and the correct relation between the number of zero
crossings and the number of extremes that define the IMF. This way we will find the IMF
without actually having to check for symmetric envelopes.

(5) Check if the mean signal is close enough to zero, based upon the stop criterion. If
not, repeat the process from step 1 with the resulting signal from step 4 as the input signal
a sufficient number of times.

(5.19)

When the stop criterion is met, k=K, the IMF is defined as the last result of (4).

(5.20)

After the IMF  is found, define the residue  as

in11 m n,( ) x m n,( )=

in21 m n,( ) r1 m n,( )=

inlk m n,( )

emax m n,( )
emin m n,( )

emlk m n,( )
emax m n,( ) emin m n,( )+

2----------------------------------------------------------=

emlk m n,( )

hlk m n,( ) inlk m n,( ) emlk m n,( )–=

hlk m n,( )

emlk m n,( ) ε< m n,( )∀

inl k 1+( ) m n,( ) hlk m n,( )=

cl m n,( ) hlK m n,( )=

cl m n,( ) rl m n,( )
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(5.21)

(6) The next IMF is found by starting over from step 1, now with the residue as the
input signal.

(5.22)

Steps (1) to (6) can be repeated for all the subsequent . The EMD is completed
when the residue, ideally, does not contain any extrema points. This means that it is either
a constant or a monotonic function. The signal can be expressed as the sum of IMFs and
the last residue

(5.23)

5.2.2  Implementation for image EMD
The EMD of images relies on proper spline interpolation in two dimensions. Some efforts
to implement the EMD in two dimensions have been published [51,62] but the methods
have not proven to be able to fully decompose the two-dimensional signal down to a res-
idue with a low number of extrema points. We will give an example of such an imple-
mentation and explain its drawbacks. The residue signal should have only a few extrema
points. Huang et al. [36] state that there should be no extrema points in the one-dimen-
sional case and ideally we would like to have a similar criterion for the two-dimensional
case.

It is mainly steps (1) and (2) in the sifting process that cause problems in the imple-
mentation of the EMD in two dimensions. We here present our solution to these prob-
lems. In step (1) we have the problem of selecting the extrema points. In 2D, there are
many possibilities to define extrema, each one yielding a different decomposition. Since
we are only concerned with discrete two-dimensional signals we simply extract the ex-
trema points by comparing the candidate data point with its nearest 8-connected neigh-
bours. This does not allow for saddle points to be considered as extrema points. In the
case where saddle points are considered to be extrema points in the algorithm, these are
both maxima and minima at the same point. This nails the saddle point to the zero mean
level in the first sifting round. Clearly, more sophisticated methods to extract extrema
points could handle the situation with saddle points to be considered as extrema points as
well, but the extrema points defined by an 8-connected neighbourhood serves the purpose
for EMD at this stage, with further improvement being possible. In the following, saddle
points are thus not considered to be extrema points. 

The border constraints are even more important in two dimensions than they are in
the one-dimensional EMD case. One of the main objections for using spline interpolation
in the EMD for two-dimensional signals such as images is that the borders cause too
many problems. The set of extrema points is very sparse and since the interpolation meth-
ods only interpolate between points, the borders need special care. We propose the trick

rl m n,( ) inl1 m n,( ) cl m n,( )–=

in l 1+( )1 m n,( ) rl m n,( )=

rj

x m n,( ) rL m n,( ) cj m n,( )
j 1=
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of adding extra data points at the borders to the set of extrema points. These extra points
are placed at the corners of the image and equally spaced around the border. Without
these extra points, the areas not covered by the interpolation traverse into the image in the
sifting process.

In the second step in the sifting process the problem is to fit a surface to the two-di-
mensional scattered data points representing the extrema points. The interpolated surface
must go through each data point. Overshot must be avoided and the second derivative
must be continuous everywhere for the signal to be smooth enough for two-dimensional
EMD. The interpolation methods considered here are triangle-based cubic spline interpo-
lation and thin-plate smoothing spline interpolation. The first is an example of an inter-
polation method using a piece-wise approach to interpolate the surface. It produces piece-
wise smooth surfaces and is based on Delaunay triangulation [67] of the data. The piece-
wise approach causes more problems in the two-dimensional case than with one-dimen-
sional signals. Even though the interpolator produces continuous second derivatives, such
as the cubic spline in [51] or the radial basis functions used in [62], the borders of the
neighbouring pieces cause problems. It is possible that the piece-wise approach will work
if we use another set of extrema points where the saddle points are included. This is not
examined in this thesis but is left to future work. 

We suggest that the thin-plate smoothing spline interpolation is used for the imple-
mentation of the two-dimensional EMD. This method gives a surface with continuous
second derivative everywhere. The thin-plate smoothing spline algorithm [8] calculates
the function f that minimizes the integral bending norm If, in Equation 5.24, for given
scattered data in the plane. The integral is taken over the entire image, and involves the
second derivatives of f. 

(5.24)

This means that the determination of the smoothing spline involves the solution of a linear
system with as many unknowns as there are data points. This method turns out to success-
fully decompose an image into its IMFs and a smooth residue with no or only a few ex-
trema points. We use the thin-plate smoothing spline interpolation for the two-
dimensional EMD throughout this thesis.

Example 5.7. The scattered extrema points from the fourth IMF in Figure 5.35(d) are
shown in Figure 5.31(a). Local maxima are plotted as light pixels and local minima are
plotted as dark pixels. The different surfaces achieved when interpolating the same scat-
tered data points using thin-plate interpolation and triangle-based cubic interpolation are
shown in Figure 5.31(b,c). The artifacts when using a piece wise approach on very sparse
data are caused by the sharp edges and the un-smooth borders of the different areas cre-
ated by the triangulation. This can be seen in Figure 5.31(c). These sharp borders intro-
duce new extrema points in the iteration for the next IMF and prevent the decomposition
from finding and separating any lower spatial frequencies. This also forces the EMD
method into producing IMFs containing features that were not in the image originally.
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Figure 5.31. The different resulting surfaces when interpolating the scattered data points (a), using thin plate 
interpolation (b), and triangle-based cubic interpolation (c).

5.2.3  Significant extrema points
In the first and second IMFs the number of extrema points usually is very large. Not all
of these are essential for the signal analysis We can reduce the number of extrema points
by selecting the significant extrema points of the IMF. This is done by setting the extrema
points with low amplitude to zero, as described by Equation 5.25.

(5.25)

Figure 5.32(a) shows the extrema points of the first IMF at their position in the image
where the rest of the pixels are set to zero. Figure 5.32(b) shows the corresponding his-
togram of the image in Figure 5.32(a). 

Figure 5.32. a) The extrema points of the first IMF at their position in the image, the rest of the 
pixels zeroed. b) histogram of the image in a.

If we let the coefficients with absolute amplitude lower than a suitable threshold, in
this case 10, be set to zero we get the significant extrema points with respect to the thresh-
old, shown in Figure 5.33.

a b c

b m n,( )
0 if b m n,( ) T≤
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Figure 5.33. a) The image in Figure 5.32(a) with the smallest coefficients set to zero, b) histogram 
of the image in (a).

Keeping only the significant extrema points reduces the number of samples needed to
represent the IMF, with only a minor effect in the reconstructed signal. However, errors
will be introduced which will show up in the SNR measure. 

This operation also serves as a tool for noise reduction. The insignificant extrema
points are defined to be noise. It is sometimes assumed that the first IMF contains all the
noise in the signal and that the noise can be removed by just skipping the first IMF. This
is not true. Noise usually contains all empiquencies, both higher and lower than the max-
imum empiquency of the signal. The effects of EMD of noise was treated in section 5.1.5.
Image processing is often performed on digitized photos. This means that any image is
noisy, due to the physics of image capturing. High quality photos, such as the Lenna im-
age, have a low noise level, not visible to the human eye, with a signal-to-noise ratio high-
er than 40 dB. For signals with moderate signal-to-noise ratio, we can still assume that
the noise is of lower amplitude than the significant extrema points. We can then reduce
the noise by setting the extrema points with low amplitude to zero, as described by Equa-
tion 5.25.

5.2.4  Image EMD
In this section we use three examples to illustrate the application of our method for image
EMD calculations. The first example decomposes the 128x128 pixel Lenna image shown
in Figure 5.34. The second example uses a 64x64 pixel detail part of the 512x512 pixel
Lenna image and the third example treats a 64x64 detail part of the Barbara image in
Figure 5.38.

Example 5.8. As an example of an image EMD we look at the well-known Lenna im-
age, shown in Figure 5.34. The image's four IMFs and their corresponding residues are
shown in Figure 5.35. This example clearly demonstrates the “band-pass filtering” effects
of the EMD. The first IMF in a) and the first residue in e) can be seen as the result of a
high-pass and low-pass filtering process. Adding these together reconstructs the original.
For creation of the second IMF the first residue in Figure 5.35(e) is treated and the result
shows as the second IMF in b) and the second residue in Figure 5.35(f). Using these to
reconstruct the original we add a), b), and f) according to Equation 5.23. Continuing the
decomposition gives four IMFs and a final residue with only a few extrema points.

a b
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Figure 5.34. The Lenna image at 128x128 pixel size.

Figure 5.35. a) First IMF, b) second IMF, c) third IMF, d) fourth IMF, e) first residue, f) second 
residue, g) third residue, h) fourth residue.

Example 5.9. Figure 5.36 shows a part of the textured hat of the Lenna image. This
texture is only visible in the high resolution 512x512 pixel version of the image. This ex-
ample shows the EMD of a highly detailed texture image in Figure 5.37, using a medium
level of the stop criterion. The first IMF captures the texture component with high spatial
frequency of the hat and in the same IMF the high frequency noise in the background.
The texture components of lower spatial frequency remain in the first residue, as do the
shape and curvature of the hat. Next step is to separate the first residue into the second
IMF and second residue. Here the second IMF still holds some high spatial frequencies
and the second residue holds the shape and curvature of the hat. While decomposing this
image down to a residue with only a few extrema points, we see the potential of EMD to
evolve into a texture representation tool. This application is not treated in this thesis but
left to future work. 
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Figure 5.36. Part of the hat of Lenna image, 512x512.

Figure 5.37. a) First IMF, b) second IMF, c) third IMF, d) fourth IMF, e) first residue, f) second 
residue, g) third residue, h) fourth residue.

Example 5.10. Figure 5.38 shows the Barbara image, with the lower right corner cut
as test image. This image contains many parts with high spatial frequency and is often
used to demonstrate the performance of image coders and texture analysis methods. We
use the lower right corner of the image for this example. The EMD is shown in
Figure 5.39, with, from left to right: the first IMF, the second IMF, the third IMF and the
third residue. This is an example of the use of too large a value of the stop criterion. With
a smaller value the first two IMFs would have been separated into some more IMFs and
more information of the image would have been revealed. 

a b c d
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Figure 5.38. Left: Barbara. Right: lower right corner zoomed. 

Figure 5.39. From left to right, the three IMF s of the image to the right in Figure 5.38, and the 
residue

It should be noted that all these IMFs are approximately zero mean, while the DC lev-
el of the signal is contained in the residue. These IMFs have the very special property of
having one extrema point between two zero-crossings in almost any direction, except
where there are saddle points. This will be used in the next chapter to get a more efficient
representation of the EMD.

5.2.5  Conclusion
The EMD concept is successfully extended into two dimensions. The main problem with
the implementation is the detection of the extrema points and the interpolation of the scat-
tered extrema points. Performance of the EMD depends on the interpolation method and
its implementation. 

5.3  Summary
In this chapter the Empirical Mode Decomposition (EMD) was introduced. The use of
EMD in the Hilbert-Huang Transform (HHT) was viewed as an example of EMD for
time signals. Different interpolation methods were discussed for time signals. The con-
cept of empiquency is introduced for further use in subsequent chapters. 

The EMD was extended to two dimensions and we proposed an improved method to
decompose a full image into a number of IMFs and a residue image with a minimum
number of extrema points. The selection of significant extrema points was discussed as
a tool for noise reduction. 
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Chapter 6

Compression of the EMD

In Chapter 5 the EMD for images was developed. In this and the following chapters we
will investigate how to use it for compression. In this chapter a number of methods to
compress the EMD are tested. The set of IMFs and the residue image is a very redundant
way to represent an image. Our first goal is to represent the image by its EMD with the
same number of bits as the original image. Our second goal is to invent an image coder
that achieves reasonable compression. Throughout this chapter the test image used is the
part of Lenna 512 shown in Figure 5.36 called “detail one”.

First we use a memory-less coding strategy, an entropy coder, on each IMF and the
residue to test the compression potential of the EMD. 

The next attempt to use the EMD for compression is the Extrema Point Coder [51].
This method is examined here both for time signals and images. The EMD sorts the em-
piquencies in such a way that there is only one empiquency present at each position for
each IMF. Although the empiquency changes with position in the IMF the hypothesis for
the next compression method is that within a reasonable small image block the empiquen-
cy should be approximately the same. This way the block-based DCT could represent the
image with only one or two of the DCT coefficients for each block. 

Disregarding the blocking, the DCT of the IMFs shows an interesting structure. Apart
from the first IMF they have all significant components in the low-frequency region of the
coefficient matrix. Zeroing out everything else gives an efficient representation of the
IMF and the compression result is good. But there still remains to find a way to compress
the first IMF. 

6.1  Entropy coding of the EMD
The scheme for entropy coding of the EMD is presented in Figure 6.1. The image is de-
composed into its IMFs and a residue. These are entropy coded by a Huffman coder ap-
plied to the quantized IMFs and residue. 
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6.1.1  Results 

The set of IMFs and residue is compressed using fine quantization and Huffman coding
results in a bitrate of 5.49 bpp at PSNR of 58.95 dB for the first IMF, 4.96bpp at PSNR
of 58.97 dB for the second IMF, 5.47 bpp at PSNR of 59.04 dB for the third IMF, 6.79
bpp at PSNR of 58.89 dB for the fourth IMF, and 7.52 bpp at PSNR of 58.88 dB for the
residue. Compression result using quantization levels ranging from 256 levels down to 2
levels are presented in Figure 6.2. An example of quantized IMFs and residue is shown
in Figure 6.3 together with information on quantization, rate and distortion. We present
the quantized IMFs and residue together with the original. The addition of the chosen re-
constructions creates the reconstructed image in Figure 6.4 with 15.61 bpp and PSNR
33.9 dB. 
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Figure 6.1. The EMD Entropy coding scheme.
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Figure 6.2. Entropy Coding results for each IMF and Residue, a) first IMF, b) second IMF, c) third 
IMF, d) fourth IMF, e) residue.
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IMF1
40.54dB
2.60 bpp
32 quantization levels

IMF2
41.29 dB
2.07 bpp
32 quantization levels

IMF3
40.87 dB
2.53 bpp
32 quantization levels

IMF4
40.84 dB
3.84 bpp
32 quantization levels

Residue
40.80 dB
4.57 bpp
32 quantization levels

Figure 6.3. Left: original, the image on top and IMFs and the residue below. Middle: The 
quantized IMFs and residue. Right: Information on quantization levels, rate, and distortion for 

the images. 
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Figure 6.4. Reconstruction using 15.61 bpp results in PSNR 33.9 dB. 

6.2  Extrema point coding 
Our next idea to compress the EMD will be termed the extrema point coder. 

The idea is to decompose the signal into its IMFs and transmit only the extrema points
for each IMF. Then we reconstruct the IMF in the decoder with spline interpolation. This
was first presented in [51]. The scheme is shown in Figure 6.5.

6.2.1  One-dimensional extrema point coding
To get a feeling for the behaviour of the IMFs in a coding application, we use the com-
posite chirp test signal from example 5.1 in section 5.1. The IMFs are computed using
cubic spline interpolation. The bitrate is estimated through entropy calculations by Eq.
3.1) in which the signal is quantized to the nearest integer. With the representation used
here this means quantization to 256 levels. The entropy of a signal serves as an indicator
of performance of a memory-less and lossless compression algorithm. The entropy is cal-
culated for the IMFs themselves, their extrema vector, and their quantized extrema vector,
as listed in Figure 6.6. The sum of entropy of the IMFs is much higher than the entropy
of the signal itself. Yet, choosing to use only the extrema points gives the opportunity to
code very sparse signals. The IMF extrema vectors are plotted in Figure 6.7. As can be
seen, both in the plots and in the listing in Figure 6.6, the number of extrema points is low
compared to the length of the original signal to code. The fewer extrema points to code
the better. The cost of coding these sparse signals is estimated by the entropy of the ex-
trema vector in Figure 6.6 and even more compression can be achieved with further quan-
tization. in The example quantization to 128 levels is used. The entropy of the test signal
is 7.08 bits/sample, while the sum of the entropies of the IMFs equals 28.52 bits/sample.
Using the extrema points of the IMFs for representing the signal gives a summed entropy
of 5.90 bits/sample, while using quantized extrema points leaves us with a summed en-
tropy of 3.42 bits/sample. 



Chapter 6 Compression of the EMD

116

EMD
Decomposition

First IMF

Second IMF

Nth IMF

Extract extrema

Extract extrema

Extract extrema

Source 
Coding

Source 
Decoding

Channel

Interpolation

Interpolation

InterpolationFirst IMF
reconstructed
 

reconstructed

reconstructed
Nth IMF

Second IMF

Decoder

Coder

Signal

Signal

Reconstructed

Figure 6.5. The extrema point coding scheme.
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Figure 6.6. Listing of entropies of the IMFs and their extrema vectors.

Signal # sample entropy # extrema entropy for extrema
entropy for 
quantized extrema

Composite chirp 2001 7.08

IMF 1 2001 7.19 637 2.72 2.03

IMF 2 2001 6.73 345 1.56 0.99

IMF3 2001 5.13 189 0.68 0.23

IMF4 2001 3.37 101 0.46 0.11

IMF5 2001 2.69 54 0.28 0.04

IMF6 2001 3.41 33 0.20 0.02

SUM of IMF 
entropy

28.52 5.90 3.42
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Reconstruction of the IMF is done by cubic spline interpolation of the extrema points re-
ceived. The signal can then be reconstructed by the addition of the reconstructed IMFs
and the residue. The interpolation introduces errors which are plotted in Figure 6.8. This
is because the IMF itself is not a spline function but approximated by a spline interpola-
tion of the extrema points when reconstructed. When no quantization is done on the ex-
trema vectors, the cubic spline interpolation causes the least reconstruction error of
several tested interpolation methods. This is in line with the examination of different in-
terpolation methods in section 5.1.3. 

a b

c d

e f

Figure 6.7. The extrema points of the IMFs respectively: a) IMF1, b) IMF2, c) IMF3, d) IMF4, e) 
IMF5 f) IMF6.
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Comments
The lossless compression algorithm ZIP compresses the whole set of IMFs into approx-
imately the same number of bits as when applied to the original signal. This indicates that
there could be a way to overcome the redundancy in the set, and use this for compression.
The spline interpolation of the extrema points introduces large errors in the reconstructed
signal. This is particularly true for the first IMF which holds the most unsmooth part of
the signal.

a b

c d

e f

Figure 6.8. The reconstruction error for the IMFs respectively, a) IMF1, b) IMF2, c) IMF3, d) 
IMF4, e) IMF5 f) IMF6.
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6.2.2  Two-dimensional extrema point coding
With the result of extrema point coding of time signals in mind, we want to use the same
concept on images.

Coder outline
The two-dimensional extrema point coding is done by letting the extrema points of each
IMF and residue represent the image. The coding follows the same scheme as for one-
dimensional signals shown in Figure 6.5. The image is decomposed into a number of
IMFs and a residue. For each IMF and the residue the extrema points are extracted and
coded. Reconstruction is done with spline interpolation, either triangle-based cubic or
thin-plate. The first IMF is not particularly smooth and the number of extrema points of
the first IMF is very large. The smoothing thin-plate interpolation cannot reconstruct the
first IMF in a proper manner. Instead we use the triangle-based cubic spline interpolation
for the reconstruction of the first IMF.

The positions of the extrema points are coded using runlength coding and their values
are quantized and fixlength coded. The exact positioning of the extrema point is extreme-
ly important for the result. In the extrema point coding scheme we use Elias coding for
the runlength coding of the extrema point positions and fixlength coding for the quantized
amplitudes of the extrema points. The fixed length is in relation to the number of quanti-
zation levels.

Example 6.1. Reconstructing the image with and without the cubic interpolating re-
construction of the first IMF gives very different visual performance as shown in
Figure (a). Here the thin-plate spline interpolation is used for reconstruction of all IMFs
and the residue. In Figure (b) the thin-plate spline interpolation is used for reconstruction
of all IMFs and the residue, except for the first IMF, where the triangle-based cubic spline
interpolation is used. 

a) The test image “Detail one”, b) Reconstruction by thin plate interpolation of all
IMFs and residue, PSNR 23.8dB. c), Reconstruction by thin plate interpolation of all
IMFs except for the reconstruction of the first IMF where cubic spline is used, PSNR
21.0dB.

It is obvious that the visual quality is better in the latter case, although the PSNR
measure tells us the opposite.

a b c
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Example 6.2. The significant extrema points of the first IMF of the image in
Figure (a), quantized with enlarged zero zone, are shown in Figure 6.9. The length histo-
gram of zero runs in a line scan of the significant extrema point image is plotted in the
histogram in the same figure.

Using Elias code gives us an effective way to assign codewords to the runlength val-
ues, giving 2982 bits to code the positions in this particular case. The fixed length code
for coding of amplitude values uses here a 4-bit code to code 16 levels of amplitude. In
this example the 767 nonzero positions can be coded with 767*4=3068 bits. 

6.2.3  Results 

The extrema points of the IMFs and the residue from the EMD of the test image in
Figure 5.36 are shown in Figure 6.10. 

The set of IMFs and residue is compressed using the extrema points shown in
Figure 6.10. Five different sizes for the extended zero zone are used and the number of
quantization levels ranges from 256 levels down to 2 levels.

The curves in Figure 6.11 show that each IMF and the residue can be represented with
an acceptable distortion with a rate below one bit per pixel, except for the first IMF and
maybe the second. In Figure 6.12 we have chosen to present one reconstruction of each
IMF and residue. We present the reconstructed image together with the original. The ad-
dition of the chosen reconstructions creates the reconstructed image with 6.75 bpp at psnr
equal to 19.79 dB.

Figure 6.9. a) Extrema points of the first IMF, grey is zero. b) Length histogram of zero runs
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a b

c d

e
Figure 6.10. From the EMD of Figure 5.36: a) extrema points of IMF 1, b) extrema points of IMF 

2, c) extrema points of IMF3, d) extrema points of IMF 4, extrema points of the residue.
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Figure 6.11. Extrema Point Coding results for each IMF and residue, a) first IMF, b) second IMF, 
c) third IMF, d) fourth IMF, e) residue.

a b

c d

e
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Sum of IMFs
and residue
19.79 dB
6.75 bpp

IMF1
30.27dB
3.16 bpp
1227extrema points

IMF2
35.21 dB
1.60 bpp
461 extrema points

IMF3
35.35 dB
0.95 bpp
162 extrema points

IMF4
25.21 dB
0.67 bpp
38 extrema points

Residue
27.34 dB
0.375 bpp
6 extrema points

Figure 6.12. Left: original, the image on top and IMFs and the residue below. Middle: the 
reconstruction of the object to the left by interpolation of the extrema points. Right: information 
on rate and distortion for the reconstructed images. The number of extrema points includes extra 

helping points at the image border.
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Figure 6.13. Reconstruction using 8 bpp results in PSNR 22.78 dB. 

6.2.4  Conclusion
The extrema point coding approach is an attractive way to represent the image but does
not seem to be suitable for compression. Normally in other coding methods it is in the
quantization process that the major reduction of data and quality loss is found. In this
method the major distortion comes from the reconstruction by interpolation. However,
we have almost reached our first goal of representing the image without too much distor-
tion at its original bitrate, Figure 6.13.

6.3  Block-based single-component 
DCT coding
We saw in Chapter 6.2 that using the extrema points to represent the image results in a
large number of coefficients to code. This number has to be reduced before we can hope
to achieve good compression. In this chapter we use the DCT, presented in section 1.2.1,
for this purpose.

6.3.1  Coder outline
The sifting process for finding the IMFs sorts out one empiquency for each position in
each IMF. This should trig a transform coder to produce a very compact code, as there is
only one empiquency present in the IMF at each position. Most IMFs would only have
response in the low frequency band of the DCT. 
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The idea is to divide each IMF into blocks of a specific size and use the DCT on each
block. We use only one coefficient for each block. The motivation for this is the assump-
tion that the IMF holds locally only one spatial frequency. If the DCT can represent this
spatial frequency with only one coefficient, this would yield a good compression of the
IMF. Decoding of the IMF is done with inverse DCT. 

The coder is implemented in accordance with the scheme in Figure 6.14, which is
based on the scheme in Figure 6.5. 

The implementation of the single-component DCT coding block is illustrated in
Figure 6.15. First the IMF is divided into blocks of a specific size. Each block is trans-
formed using DCT. The largest magnitude is detected and the rest of the coefficients are
zeroed. The last step in this block is to patch the DCT blocks together into one large ma-
trix, the coefficient image.

EMD
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First IMF

Second IMF

Nth IMF

Source 
Coding

Source 
Decoding

Channel

+

Reconstruction

First IMF
reconstructed
 

reconstructed

reconstructed
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Second IMF

Decoder
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Image

Image
Reconstructed

Figure 6.14. Single-component DCT coding scheme.
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Figure 6.15. Detail of the block-based single-component DCT coding block.

Huffman code is used to represent the amplitudes of the DCT coefficient which are
quantized to 256 levels. The positions are line scanned and runlength coded using Elias
code.

The details of the reconstruction block are shown in Figure 6.16. The first step in the
reconstruction is to divide the coefficient image into blocks holding only one non-zero
value. Next we reconstruct the image block with inverse DCT, and patch the image
blocks together to an image. 

Figure 6.16. Detail of the reconstruction block.

Example 6.3. We show the effects of using two different block sizes for the first IMF
in Figure 6.17 and Figure 6.18. In Figure 6.17 the first IMF is coded using blocksize 2x2.
We see in (a) that the single component of each block has different positions within the
block. This results in the trigging of different basis functions in the reconstruction in
Figure 6.17(b). In Figure 6.18 the first IMF is coded using blocksize 16x16. The different
positions are shown in Figure 6.18(a) and the reconstruction is shown in Figure 6.18(b).
With this blocksize it is even clearer that different positioning of the single component
gives different reconstruction results. The same basis function is used for the whole
block, clearly seen in Figure 6.18(b). The high spatial frequency in the IMF is captured
using both blocksizes, but in the first case the localization is more precise.

Block
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Figure 6.17. First IMF, blocksize 2x2, a) DCT-components, b) reconstructed IMF,

Figure 6.18. First IMF, blocksize 16x16, a) DCT-components, b) reconstructed IMF

6.3.2  Result
The different blocksizes tested on each IMF and the residue are 2x2, 4x4, 8x8, 16x16, and
32x32 pixels. In Figure 6.19 we can see the result of reconstructing the image by the ad-
dition of the reconstructed IMFs and residue when the single-component block-based
DCT is used. Each dot represents a combination of blocksize from 2x2 to 32x32 for the
four IMFs and the residue needed to reconstruct the image. Excluding the option for
blocksize 2x2 eliminates the higher bitrates. Excluding the option for blocksize 32x32 as
well eliminates the worst images in terms of PSNR. In this test we skipped coarse quan-
tization of the amplitudes as this procedure only further reduces the performance in terms
of PSNR. The method does not perform better than 20 dB due to blocking artifacts and
the lack of precision in frequency response from the single-component DCT representa-
tion.

a b

a b
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Figure 6.19. Each dot represents a combination of blocksizes from 2x2 to 32x32 for the four IMFs 
and the residue needed to reconstruct the image.

In Figure 6.20 some reconstructions are shown. The vector represents the blocksizes
used for each IMF (first IMF, second IMF.....residue), where 5 is 32x32blocks, 4 is 16x16
blocks, 3 is 8x8 blocks, 2 is 4x4 blocks, 1 is 2x2 blocks. The best performance in terms
of PSNR is shown in Figure 6.21, when we use many 2x2 blocks, but then we have higher
bitrates instead.

Figure 6.20.    a) (3 4 3 3 3) PSNR =17.7624   0.9810 bpp, b) (3 4 5 3 3) PSNR =17.5502   0.7686 
bpp, c) (5 4 5 2 2) PSNR =19.0502 1.6602 bpp

Figure 6.21.    a) (1 3 2 1 1) PSNR =19.8284   9.3147 bpp.

bpp

dB

a b c
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Figure 6.22. Result to left, in the middle a reconstructed example using the parameters specified 
to the right.

IMF1
29.07dB
1.48 bpp
size of block: 4x4
128 quantization levels

IMF2
33.41dB
0.79 bpp
size of block: 4x4
16 quantization levels

IMF3
33.86 dB
0.86 bpp
size of block: 4x4
16 quantization levels

IMF4
32.53 dB
0.87 bpp
size of block: 4x4
16 quantization levels

Residue
32.66 dB
0.84 bpp
size of block: 4x4
16 quantization levels
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6.3.3  Two-coefficient block-based DCT
Even though the IMF could be locally zero mean, the blocking tiles it into non-zero-mean
parts. We need to include the DC component of each block to get a representation good
enough for a compression algorithm. Our method is the same as the one-coefficient
block-based DCT but with the DC component added to get better performance. In this
scheme the DCT components kept are also quantized using different numbers of quanti-
zation levels.

Result
Figure 6.22 shows compression results from the two-component block-based DCT. For
bitrates below 1 bpp, the distortion is acceptable in terms of PSNR value for most of the
IMFs except for the first IMF. But the visual performance shows severe blocking arti-
facts. 

6.3.4  Conclusion
Due to the blocking artifacts, both the one-component block-based DCT and the two-
component block-based DCT fail to be serious candidates for a compression algorithm.
However, they illustrate several properties of the IMFs.

6.4  DCT threshold coding 
The sifting process for finding the IMFs sorts out higher empiquencies in the first IMF.
The tendency is that the IMFs other than the first are low frequency images. This can be
seen in the DCT of the whole IMFs in Figure 6.23, in which the image’s lowest frequen-
cies in both directions are represented by the components in the upper left corner of the
image and the image’s highest frequencies in both directions are represented by the com-
ponents in the lower right corner of the image. The upper right corner represents the high
frequencies in the horizontal direction and low frequencies in the vertical direction, while
the lower left corner represents the high frequencies in the vertical direction and low fre-
quencies in the horizontal direction. In Figure 6.23(a) the components are spread all over
the matrix, with a highlight in the middle representing the dominating frequencies of the
first IMF. In Figure 6.23(b) the largest components are located along the upper edge,
meaning that the second IMF is mostly low frequency in the vertical direction and has
little higher frequency content in the horizontal direction. For the rest of the IMFs and the
residue, the frequency components concentrate in the upper left corner, where they rep-
resent low spatial frequency. 

6.4.1  Coder outline
The idea is to keep only the significant components located in the upper left corner. The
size of the triangle of components is determined by a sliding limit line parallel to the di-
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agonal from the lower left corner to the upper right corner. The limit line shall be as close
to the upper left corner as possible when still no components larger than the threshold are
to the right of the line. All the components in the upper left corner to the left of the line
are undisturbed, only uniformly quantized. 

6.4.2  Implementation
The implementation scheme is shown in Figure 6.24. The image is decomposed into its
IMFs and the residue. Each IMF and the residue is fed into the coding block. After recon-
struction the IMFs are added together with the residue to reconstruct the image. The de-
tails of the coding block and the reconstruction block are further described below. 

a b

c d

e
Figure 6.23. a) 64x64 DCT transforms of the 64x64-sized IMFs (a-d) and the residue (e) of the 

EMD shown in the left column in Figure 6.29. 



Chapter 6 Compression of the EMD

132

The coding block
The details of the coding block are shown in Figure 6.26. Each IMF and the residue are
transformed by the DCT. The resulting DCT component matrix is searched for the size
of the upper left corner by scanning the component matrix in a zigzag pattern starting
with the DC level coefficient in the upper left corner and stopping at the lower right cor-
ner. The scan pattern is illustrated in Figure 6.25. The scan is truncated at the position of
the first component larger than the threshold found when scanned from the end. The re-
sulting DCT components in the scan are uniformly quantized. The component values in
the truncated scan are Huffman coded.
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Figure 6.24. The DCT Threshold coding scheme.
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Figure 6.25. Zigzag scan pattern.

Figure 6.26. Detail of the coding block.

The reconstruction block
The details of the reconstruction block are shown in Figure 6.27. When the truncated and
quantized scan is reconstructed from the source decoding step, the original length of the
scan is established by adding zeros at the end. The next step is to resize the data into a
matrix format. Finally the IMF is reconstructed by the inverse DCT.
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Figure 6.27. Detail of the reconstruction block.

6.4.3  Result
DCT Threshold Coding results for each IMF and residue are shown in Figure 6.28. The
full result is presented to the left and to the right is a blow up of the result below one bit
per pixel. For the first IMF no blow up is presented. Each graph consists of seven differ-
ent curves, representing the seven different quantizations used in the test. The stars on
each curve present the result for the different truncation lengths. In this test we use a
number of predefined truncation lengths instead of a threshold-controlled truncation.

In Figure 6.29, we present one reconstruction of each IMF and the residue, together
with the original and the parameters. The reconstructed image is in Figure 6.30 (a) at
28.26 dB and the sum of bitrate of. 2.26 bpp. In Figure 6.30 (b) the compression ratio is
set to 1. The image is reconstructed at 34.41 dB using a sum of bitrate of 7.97 bpp where
most of the bits, 4.2 bpp, 2.8 bpp, are spent on IMF1 and IMF2 respectively.

full size

resize to
matrix
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scan to



6.4 DCT threshold coding

135

Figure 6.28. DCT threshold coding results for each IMF and residue, a) first IMF, b) second IMF, 
c) zoomed, d) third IMF, e) zoomed, f) fourth IMF, g) zoomed, h) residue, i) zoomed.
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Figure 6.29. Original to left, reconstructed in the middle, using the parameters specified to the 
right.

IMF1
35.47dB
1.94 bpp
length of vector:2048
64 quantization levels

IMF2
35.28 dB
0.28 bpp
length of vector: 328
32 quantization levels

IMF3
35.11 dB
0.13 bpp
length of vector: 164
16 quantization levels

IMF4
35.09 dB
0.027 bpp
length of vector:82
4 quantization levels

Residue
36.13 dB
0.008 bpp
length of vector: 29
4 quantization levels
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Figure 6.30. a) Reconstructed image, PSNR =28.46 dB, sum of bitrate = 2.39 bpp, b) 
Reconstructed image, PSNR =40.51 dB, sum of bitrate = 8.00 bpp.

When implementing a more traditional threshold coding of the DCT of the EMD, keeping
only the significant components, the result is results for each IMF and residue are approx-
imately the same as for the method presented here.

6.4.4  Conclusion
Threshold coding of the DCT of the IMF and residue gives a compact representation of
these images except for the first and perhaps the second IMF which would need better
methods to be efficiently compressed. Although the two coding methods tested result in
different components kept, the coding result is not very different. The traditional thresh-
old coder is slightly better. We have reached our first goal of representing the image with
the EMD, using no more bits than the original, and without too much distortion. Using a
more efficient way to code the first IMF we expect to achieve better image compression.

6.5  Summary
In this chapter different methods to compress the EMD are tested. First the set of IMFs
and residue is entropy coded with both fine quantization and coarser. 

The next idea to compress the EMD is the extrema point coder. The idea is to decom-
pose the signal into its IMFs and transmit only maxima and mean values for each IMF.
Then we reconstruct the IMF in the decoder with spline interpolation. The method is eval-
uated both for time signals and for images. The method is good for compression of the
smooth IMFs, but fails to compress the first IMF due to its high-empiquency content. The
extrema point coding approach is an attractive way to represent the image but is ill suited
for compression. It is in the quantization process that the major reduction of data and
quality loss normally appears. In this method the major distortion comes from the recon-

a b
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struction by interpolation. Using the extrema points to represent the image results in a
large number of coefficients to code. This number has to be reduced to have a good com-
pression algorithm. 

Another idea is to divide each IMF into blocks of a specific size and use the DCT on
each block. In our first attempt we use only one coefficient for each block. The motiva-
tion is the assumption that the IMF holds locally only one spatial frequency. If the DCT
can represent this frequency with only one coefficient this would yield good compression
of the IMF. Even though the IMF should be locally zero mean, the blocking tiles the IMF
into non-zero mean parts. We need to include the DC component of each block to get a
representation good enough for a compression algorithm. Due to the blocking artifacts,
both the one-coefficient block-based DCT and the two-coefficient block-based DCT fail
to be candidates for a compression algorithm. The two-component blockbased DCT rep-
resentation gives us good results in terms of PSNR values and bitrates, but the blocking
artifacts are annoying. 

The tendency is that the IMFs other than the first are low frequency images. This can
be seen in the DCT of the whole image. The idea in our third and fourth scheme is to keep
only the significant components. This is done by truncation of a zigzag scan of the DCT
matrix or only thresholding the components. Threshold coding gives a compact represen-
tation of the IMF and residue except for the first and maybe the second IMF. With this
method we can represent the image with EMD, using no more bits than the original, and
without too much distortion. 
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Chapter 7

Variable Sampling of 
EMD

In Chapter 6 our first goal was met even without finding a good method for the compres-
sion of the first IMF. To meet our second goal we must find a method for the first IMF.
With the variable sampling presented in this chapter we go back to the thinking that lead
us to the one-coefficient block-based DCT in section 6.3. A method of using overlapping
7x7 blocks is introduced to overcome blocking artifacts and to further reduce the number
of parameters required to represent the image. The very special properties of the IMF that
these are locally zero mean and ideally do not have more than one extrema point between
two neighbouring zero-crossings enables us to use the empiquency to control the sam-
pling rate of each block. 

7.1  Variable sampling of overlapping 
blocks
The special property of the IMF that the empiquency varies can be used for variable sam-
pling. Areas with many extrema points have high empiquency, while areas with a few or
no extrema points have low empiquency. The IMFs are smoother than the image itself;
only the first IMF holds the nonsmooth parts of the image. This means that it should be
possible to subsample the IMFs. Due to the different empiquencies in the different parts
of the IMF, the subsampling can be different in different parts of the IMF. 

It is known [59] that a band-limited signal can be uniquely determined from its non-
uniform samples, provided that the average sampling rate exceeds the Nyquist rate. The
extrema points define the maximum empiquency in the IMF. Maximum empiquency is
found by examining the space between the extrema points. In the first IMF there are areas
where two neighbouring pixels both are extrema points, thus the maximum empiquency
is 0.5. Letting this define our Nyquist rate, we expect that it is not possible to subsample
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this IMF without distortion.
Our suggestion is to treat the IMF blockwise. This way the sampling rate for each

block can be defined according to its empiquency content. The high empiquency blocks
that cannot be subsampled according to our Nyquist rate are not modified. The remaining
ones are subsampled. 

7.1.1  Sampling of overlapping blocks
In the implementation of the blocking process we choose to use overlapping blocks of
size 7x7 pixels. This is to minimize the artifacts from the blocking and to further reduce
the samples used to represent the IMF. The corners of the block are always represented,
regardless of the chosen sampling rate. 

The overlapping pixels in two neighbouring blocks will be the same, but used twice,
as shown in Figure 7.1. This will ensure that the concatenated blocks have the same val-
ues at the edge pixels. The overlapping pixels will only belong to one of the blocks when
patching and counting the total number of samples.

Figure 7.1. Variable sampling with overlapping 7x7 blocks.

The sampling pattern within a block consists of every pixel, every second pixel, every
third pixel, and every sixth pixel in both directions, to represent 1/1, 1/4, 1/9, and 1/36 of
the pixels, respectively, as shown in Figure 7.1.

To find maximum empiquency we use a separable approach, analysing the extrema
points by row and column separately and choosing the maximum empiquency. 
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7.1.2  Interpolation
For a signal  that is band limited to  and sampled according to the sam-
pling theorem, the signal can be reconstructed without distortion from its sampled version

 through the reconstruction formula

(7.1)

A sampling function  used for reconstruction satisfies 

(7.2)

The sampling function that should be used according to the sampling theorem is the
basis function sinc(t).

(7.3)

This function has infinite duration.
The sampling theory relies on the use of ideal filters. The use of finite signals is in

contradiction to the band limitation approach. An alternative approach is to use splines.
These are piecewise polynomials with pieces that are smoothly connected together at the
sample points. 

The cubic B-spline interpolator is given by 

(7.4)

Considering the fact that we are treating finite signals, the use of the spline interpola-
tor to reconstruct the image from its samples is superior to using a windowed sinc func-
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tion as interpolator [86]. The uniformly sampled points of the block are thus connected
by a surface created by the use of an interpolating cubic spline extended to two dimen-
sions. 

7.2  Implementation
The method of variable sampling of overlapping blocks is implemented according to the
scheme in Figure 7.2. Each IMF and the residue from the EMD of the image are proc-
essed in the variable sampling block. 

7.2.1  The variable sampling block
The details of the variable sampling block are shown in Figure 7.3. The extrema point
image holds only the significant extrema points with respect to some size of the zero
zone. Both the image itself and the extrema point image are decomposed into overlapping
subblocks. The blocks of the extrema point image are used for the determination of the
maximum empiquency in the block. This steers the sampling rate of the corresponding
image block. In the resulting bitstream each block is marked with a two-bit header that
holds information about the sampling rate.

7.2.2  The reconstruction block
The details of the reconstruction block are shown in Figure 7.4. The two-bit header of the
stream tells us not only the sampling rate but also the length of the stream for the block.
With this information the coefficients can be placed in their proper place in the 7x7pixel
block. The stream only provides samples for the 6x6 block; the missing samples are
found in the neighbouring blocks.

Reconstruction of the IMF uses the 7x7 block for block reconstruction with interpo-
lation. The nonoverlapping 6x6 part of the reconstructed block is used when patching the
blocks together to reconstruct the image. 
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Figure 7.3. Details of the variable sampling block.
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Residue 
reconstructed

Residue 

Reconstruction

Reconstruction

Reconstruction

Reconstruction

variable
sampling

variable
sampling

variable
sampling

variable
sampling

Overlapping

Find Max
Empiquency
in Block

 

Subsample

 

Variable Sampling

IMF to

Block
and add header
to coefficient
stream

points
 

Find extrema 

Overlapping
Image to

Block

Extrema Point



Chapter 7 Variable Sampling of EMD

144

Figure 7.4. Details of the reconstruction block.

7.3  Results
The method of variable sampling is tested on the  Lenna image of size 128 by 128 pixels,
shown in Figure 7.13(a), using the EMD, shown in Figure 7.9 to the left. Other images
are two different detail parts of the 512x512 Lenna image, one of size 64x64 pixels
shown in Figure 7.11(a), using the EMD, shown in Figure 7.5 to the left, and the other
one of size 128x128 pixels shown in Figure 7.12(a), using the EMD, shown in Figure 7.7
to the left. Each IMF is subsampled using the method of variable sampling with overlap-
ping 7x7 blocks, as described in section 7.2. Reconstructing the subsampled blocks is
done with cubic interpolation over a regular set of samples. The PSNR measure is com-
puted from the original and the reconstructed image. The average sampling rate measure
is a count of the number of samples used in relation to the total number of pixels in the
image.

The results of the variable subsampling of the IMFs and the residue are presented in
Figure 7.5 to Figure 7.10. To the left are the original IMFs, in the middle the reconstruct-
ed IMFs and to the right the parameters in terms of sampling rate and distortion. From
this we can see that the first IMF needs more than a quarter of the pixels, every second
sample in both directions, to be reconstructed at acceptable distortion. For the second and
third IMF we see a behaviour which is more pleasing in that it has a signal-to-noise ratio
of more than 36 dB, combined with a low sampling rate. For the fourth IMF and the res-
idue we have reached the limit of subsampling which is one sample per block. 

The image is reconstructed by the sum of reconstructed IMFs and residue. In
Figure 7.11 to Figure 7.13 the original image is shown together with the reconstructed
image. The sum of samples to represent all of the IMFs and the residue gives a value of
the average sampling rate needed to represent the image.
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IMF 1 
35.97 dB 
average sampling
rate 0.658.

IMF 2 
36.08 dB
average sampling
rate 0.2193.

IMF 3 
39.97 dB
average sampling
rate 0.1935.

IMF 4 
45.75 dB
average sampling
rate 0.1333.

residue 4 
40.58 dB
average sampling
rate 0.0317.

Figure 7.5.  Detail one. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 1. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.
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IMF 1 
30.35 dB 
average sampling
rate 0.3655.

IMF 2 
34.68 dB
average sampling
rate 0.1161.

IMF 3 
39.64 dB
average sampling
rate 0.1333.

IMF 4 
45.70 dB
average sampling
rate 0.1247.

residue 4 
40.58 dB
average sampling
rate 0.0317.

Figure 7.6. Detail one. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 20. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.
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IMF 1
33.16 dB 
average sampling
rate 0.8038.

IMF 2 
38.09 dB
average sampling
rate 0.1265.

IMF 3 
47.13 dB
average sampling
rate 0.0430.

residue 3 
57.35 dB
average sampling
rate 0.0304.

Figure 7.7. Detail two. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 1. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.
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IMF 1 
29.47 dB 
average sampling
rate 0.4367.

IMF 2 
36.69 dB
average sampling
rate 0.0578.

IMF 3 
46.73 dB
average sampling
rate 0.0273.

residue 3 
57.35 dB
average sampling
rate 0.0304.

Figure 7.8. Detail one. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 20. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.



7.3 Results

149

 

IMF 1 
33.04 dB 
average sampling
rate 0.651.

IMF 2 
42.72 dB
average sampling
rate 0.1669.

IMF 3 
54.02 dB
average sampling
rate 0.1213.

IMF 4 
62.69dB
average sampling
rate 0.1094.

residue 4 
76.29 dB
average sampling
rate 0.1094.

Figure 7.9. Lenna 128. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 1. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.
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IMF 1 
29.67 dB 
average sampling
rate 0.4625.

IMF 2 
42.6174 dB
average sampling
rate 0.1490.

IMF 3 
53.9722dB
average sampling
rate 0.1153.

IMF 4 
62.6982dB
average sampling
rate 0.1094.

residue 4 
76.2954 dB
average sampling
rate 0.1094.

Figure 7.10. Lenna 128. The result of the variable subsampling of the set of IMFs and residue 
with zero zone set to 20. Left: original, Middle: reconstructed, Right: sampling rate and 

distortion.
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Figure 7.11. Detail one. a) Original image, b) Reconstructed image by the summation of 
reconstructed IMFs and residue, 30.45 dB, average sampling rate 1.0637

Figure 7.12. Detail two. a) Original image, b) Reconstructed image by the summation of 
reconstructed IMFs and residue, 30.9934 dB, average sampling rate 0.9193.

Figure 7.13. Lenna 128. a) Original image, b) Reconstructed image by the sum of reconstructed 
IMFs and residue, 31.8 dB using an average sampling rate of 0.86.

a b

a b

a b
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7.4  Summary
We have proposed a method for variable sampling of the two-dimensional EMD. This is
done block wise using the non-uniformly located extrema points of the IMF to control
the uniform sampling rate of the block. The very special properties of the IMF can be
used for variable sampling of the IMFs and the residue in order to reduce the number of
parameters to represent the image. The empiquency varies in the IMF and thus can be
used to control the sampling rate adaptive over the image. Using overlapping blocks re-
duces blocking artifacts. 

A method of using overlapping 7x7 blocks is introduced to overcome blocking arti-
facts and to further reduce the number of parameters to represent the image. The results
presented here show that subsampling offers a way to keep the total numbers of samples
generated by EMD approximately equal to the number of pixels of the original image. 
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Chapter 8

Entropy Coding of 
Variable Sampling 
Components

The variable sampling in Chapter 7 presents a promising method to treat the EMD. The
sampling process leaves us with a number of samples for each block. In this chapter we
will concentrate on entropy coding the samples from variable sampling. 

8.1  Coder outline
This approach uses almost the same scheme as the variable sampling. The difference is
that after the subsampling the samples are entropy coded using Huffman coding or fix-
length coding of the samples. The coder is shown in Figure 8.1.

The details of the variable sampling block are shown in Figure 7.3. The IMF is
searched for extrema points and both the extrema point image and the IMF itself are di-
vided into overlapping blocks. The maximum empiquency found in the extrema point im-
age block determines the sampling rate for the subsampling of the corresponding IMF
block. The samples are represented by one sample alone or 6x6, 3x3, or 2x2 blocks of
samples. The whole set of samples is entropy coded and the components are quantized be-
fore the two-bit block header is added to each block. 

The details of the reconstruction block are shown in Figure 7.4. The two-bit header in-
dicates the sampling rate. With this information the components achieved from the stream
can be placed in their proper place in the 7x7 pixel block. The stream only contains sam-
ples for the 6x6 block, the missing samples are found in the reconstructed neighbouring
blocks. Since the missing samples are located in the rightmost column and the lowest row
of the block, the reconstruction starts with the block in the lower right corner working
row-wise through the blocks. For the blocks with no neighbours holding missing samples
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dummy samples are used. The 7x7 blocks of samples is interpolated and the nonoverlap-
ping 6x6 part of the reconstructed block is used to generate the output image. 

8.1.1  Results
The coder is tested on the EMD of three different images, Detail one, Detail two, and
Lenna128, using zero zone 1, 10, and 20. The quantization varies from 256 levels down
to 4 levels. Figure 8.2, Figure 8.4, and Figure 8.6 show the coding results for the EMD
of the images, respectively. In Figure 8.3, Figure 8.5, and Figure 8.7, example recon-
structions of the IMFs and residue using fine quantization are presented along with the
original image and the parameters used. The coding by the Huffman method gives better
performance than the fixlength coding method for the first IMF while for the rest of the
IMFs and the residue the fixlength coding method gives better performance than the
Huffman method. Figure 8.8, Figure 8.9, and Figure 8.9 show the images reconstructed
using fine quantization.
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Second IMF

Nth IMF

Source
coding
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reconstructed
Nth IMF

Second IMF

Decoder

Coder

Image
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Figure 8.1. Variable sampling entropy coding scheme.
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Figure 8.2.  Entropy coding result of Detail one. Zero zone = 1, 10, 20 quantization varies from 
256 levels down to 4 levels.

Fixlength code

Huffman code
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Figure 8.3. The result of the variable subsampling entropy coding of the set of IMF and residue 
for Detail one using fine quantization. Original to left, reconstructed in the middle, the 

parameters specified to the right. 

IMF1
31.93 dB
4.04 bpp
zero zone 10

IMF2
34.18 dB
1.43 bpp
zero zone 10

IMF3
36.75 dB
1.34 bpp
zero zone 10

IMF4
34.59 dB
0.63 bpp
zero zone 10

Residue
40.50 dB
0.31 bpp
zero zone 10
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Figure 8.4. Entropy coding result of Detail two. Zero zone=1, 10, 20 quantization varies from 
256 levels down to 4 levels.

Fixlength code

Huffman code
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IMF 1
33.15 dB 
6.58 bpp.
zero zone 10

IMF 2 
38.05 dB
1.99 bpp.
zero zone 10

IMF 3 
47.04 dB
1.10 bpp.
zero zone 10

Residue 
55.80 dB
0.96 bpp.
zero zone 10

Figure 8.5. The result of the variable subsampling entropy coding of the set of IMF and 
residue for Detail two with different values on the zero zone and fine quantization. Left: 

original, Middle: reconstructed, Right: bitrate and distortion.
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Figure 8.6. Entry coding result of Lenna128. Zero zone=1, 10, 20 quantization varies from 256 
levels down to 4 levels.

Fixlength code

Huffman code
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IMF 1
33.03 dB 
4.69 bpp.
zero zone 10

IMF 2 
34.83 dB
0.98 bpp.
zero zone 10

IMF 3 
40.83 dB
0.44 bpp.
zero zone 10

IMF 4 
49.73 dB
0.29 bpp.
zero zone 10

Residue
58.16 dB
0.28 bpp.
zero zone 10

Figure 8.7. The result of the variable subsampling entropy coding of the set of IMF and 
residue for Lenna128 with zero zone set to 10 and fine quantization. Left: original, Middle: 

reconstructed, Right: sampling rate and distortion.



8.1 Coder outline

161

Figure 8.8. a) Detail one original, b) Detail one reconstructed to 28.49 dB using 7.47 bpp. Fine 
quantization.

Figure 8.9. a) Detail two original, b). Detail two image reconstructed to 31.41 dB using 6.55 bpp. 
Fine quantization.

Figure 8.10. a) Lenna128 original, b) Lenna128 image reconstructed to 30.15 dB using 6.67 bpp. 
Fine quantization.

ba

ba

a b
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Chapter 9

EMD Image Coding 
using Variable Sampling 
of Overlapping Blocks

The entropy coding of the variable sampling presented in Chapter 8 shows the compres-
sion potential of the EMD. In this chapter we will concentrate on using the variable sam-
pling method for compression. We start with coding the samples of the IMF and residue
with the DCT. We then try coding the image by using the DCT of the variable sampled
blocks for the first IMF and coding the first residue using the threshold DCT method pre-
sented in Chapter 6.

9.1  Coding of the EMD using DCT of 
the variable sampled blocks 
(VSDCTEMD)
The structure of the variable sampling described in Chapter 7 is inherited in this coding
approach. The sampling process leaves us with a number of samples for each block. These
can be squeezed into blocks of smaller size which can be DCT coded. The DCT compo-
nents are then quantized and thresholded, leaving us with even fewer components to rep-
resent the block. 

9.1.1  Coder outline
This approach uses almost the same scheme as the variable sampling. The difference is
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that after the subsampling the samples are coded using DCT. The coder is shown in
Figure 9.1

The details of the coding block are shown in Figure 9.2. the imf is searched for ex-
trema points and both the extrema point image and the IMF itself are divided into over-
lapping blocks. The maximum empiquency found in the extrema point image block
determines the sampling rate for the subsampling of the corresponding IMF block. The
samples are represented by one sample alone or 6x6, 3x3, or 2x2 blocks of samples.
These are DCT coded and the components are quantized and thresholded before the two-
bit block header is added. The resulting component stream is Huffman coded or fixlength
coded. 

The details of the reconstruction block are shown in Figure 9.3. The two-bit header
indicates the sampling rate. With this information the components achieved from the in-
verse DCT transform of the stream can be placed in their proper place in the 7x7 pixel
block. The stream only contains samples for the 6x6 block, the missing samples are found
in the reconstructed neighbouring blocks. Since the missing samples are located in the
rightmost column and the lowest row of the block, the reconstruction starts with the block
in the lower right corner working row-wise through the blocks. For the blocks with no
neighbours holding missing samples dummy samples are used. The 7x7 blocks of sam-
ples are interpolated and the nonoverlapping 6x6 part of the reconstructed block is used
to generate the output image.

EMD
Decomposition

First IMF

Second IMF

Nth IMF

Source coding

 
Source+

First IMF
reconstructed
 

reconstructed

reconstructed
Nth IMF

Second IMF

Decoder

Coder

Image

Image
Reconstructed

Figure 9.1. Variable sampling DCT coding scheme (VSDCTEMD).
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Figure 9.2. Details of the coding block.

Figure 9.3. Details of the reconstruction block.

9.1.2  Results
The VSDCTEMD coder is tested on three different images, Detail one, Detail two, and
Lenna128, using zero zones 1, 10, and 20. The quantization varies from 256 levels down
to 8 levels. The DCT components are thresholded leaving only those having a value larger
than or equal to the threshold. The threshold varies from 0.1% to 100% of the maximum
value. Figure 9.4, Figure 9.6, and Figure 9.8, show the coding results for the EMD of the
images, respectively, and in Figure 9.5, Figure 9.7, and Figure 9.9, example reconstruc-
tions of the IMFs and residue are presented along with the original image and the param-
eters used. The coding method gives good results for all IMFs and the residue. Even for
the difficult first IMF the result is over 30 dB for a bitrate of 1bpp. Example reconstruc-
tions are presented in Figure 9.10, Figure 9.11 and Figure 9.12, along with the original
image.
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Figure 9.4. VSDCTEMD Coding results of Detail one. Zero zone=1, 10, 20 quantization varies 
from 256 levels down to 8 levels.

Fixlength code
Huffman code
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Figure 9.5. The result of VSDCTEMD coding of Detail one. Original to left, reconstructed in 
the middle, using the parameters specified to the right.

IMF1
35.52 dB
3.02 bpp
zero zone 1

IMF2
33.82 dB
0.65 bpp
zero zone 1

IMF3
36.65 dB
0.55 bpp
zero zone 1

IMF4
33.93 dB
0.35 bpp
zero zone 1

Residue
39.07 dB
0.22 bpp
zero zone 1
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Figure 9.6. VSDCTEMD Coding result of Detail two. Zero zone=1, 10, 20 quantization varies 
from 256 levels down to 8 levels

Fixlength code
Huffman code
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IMF 1
3309 dB 
2.73 bpp.
zero zone 10

IMF 2 
37.52 dB
0.38 bpp.
zero zone 20

IMF 3 
44.86 dB
0.22bpp.
zero zone 20

Residue 
48.75 dB
0.22 bpp.
zero zone 20

Figure 9.7. The result of VSDCTEMD coding of Detail two with different values on the zero 
zone. Left: original, Middle: reconstructed, Right: sampling rate and distortion.
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Figure 9.8. VSDCTEMD Coding result of Lenna128. Zero zone=1, 10, 20 quantization varies 
from 256 levels down to 8 levels.

Fixlength code
Huffman code
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IMF 
32.70 dB 
3.12bpp.
zero zone 1

IMF 2 
34.14 dB
0.44 bpp.
zero zone 1

IMF 3 
39.80 dB
0.30 bpp.
zero zone 1

IMF 4 
46.68 dB
0.26 bpp.
zero zone 1

Residue
49.28 dB
0.20 bpp.
zero zone 1

Figure 9.9. The result of VSDCTEMD coding of Lenna128. Left: original, Middle: 
reconstructed, Right: sampling rate and distortion.
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Figure 9.10. a) Detail one original, b) Detail one image reconstructed to 28.27 dB using 4.79 bpp.

Figure 9.11. a) Detail two original, b). Detail two image reconstructed to 30.76 dB using 3.56 bpp.

Figure 9.12. a) Lenna128 original, b) Lenna128 image reconstructed to 29.33 dB using 4.33 bpp.

a b

a b

ba
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9.2  Image coding using VSDCTEMD 
and DCT threshold coding 
In this modified coder we will only decompose into one IMF and one residue. We will use
the VSDCTEMD from section 9.1 on the first IMF and DCT threshold coding described
in section 6.4 on the first residue. 

9.2.1  Coder outline
This coder uses only the first IMF and the corresponding first residue to code the image.
The coder is shown in Figure 9.13. 

The first IMF is coded with the VSDCTEMD. The details of this block are shown in
Figure 9.2. The first residue is coded using DCT threshold coding. The details of this cod-
er are shown in Figure 6.26. The reconstruction is done according to the reconstruction
blocks of each coder, shown in Figure 9.3 and Figure 6.27 respectively. 

9.2.2  Results
The coder is tested on the images Detail one, Detail two, and Lenna128. The result of the
coding of the first IMF using VSDCTEMD and DCT threshold coding on the first residue
is shown in Figure 9.14, Figure 9.16 and Figure 9.18 for the images respectively. All pos-
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Figure 9.13. Combined VSDCTEMD and DCT threshold coding scheme.
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sible pairs of these two sets of results for each image are presented in Figure 9.15,
Figure 9.17 and Figure 9.19 as the result for this coder. Two different reconstruction ex-
amples for each image are presented in Figure 9.20, Figure 9.21 and Figure 9.22.

Figure 9.14. Result of coding Detail one by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.

Figure 9.15. Result of combining the coding of Detail one by VSDCTEMD in first IMF and DCT 
threshold coding on first residue.
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Figure 9.16. Result of coding Detail two by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.

Figure 9.17. Result of combining the coding of Detail two by VSDCTEMD in first IMF and DCT 
threshold coding on first residue.



Chapter 9 EMD Image Coding using Variable Sampling of Overlapping Blocks

176

Figure 9.18. Result of coding Lenna128 by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.

Figure 9.19. Result of coding Lenna128 by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.
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Figure 9.20. Result of coding Detail one by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.a) 1.00 bpp 30.09 dB, b) 0.79 bpp 29.23 dB

Figure 9.21. Result of coding Detail two by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.a) 1.2788 bpp 30.0208 dB, b) 0.69 bpp 28.88 dB

Figure 9.22. Result of coding Lenna128 by VSDCTEMD in first IMF and DCT threshold coding 
on first residue.a) 1.35 bpp 30.52 dB, b) 0.89 bpp 28.86 dB

a b

a b

a b
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9.3  Summary
In this chapter we have used the variable sampling method for compression. We started
with coding the samples of the IMF and residue with the DCT followed by an entropy
coder. We then tried the approach of using only one IMF and coding the first IMF by us-
ing the DCT of the variable sampled blocks and coding the first residue using the thresh-
old DCT method presented in Chapter 6.
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Chapter 10

Empiquency-Controlled 
Image Coding 

In this chapter we present alternative ways to code an image using the blockbased variable
sampling. We assume that the same method that gives good results coding the first IMF
also can be used on the image itself. We use the empiquency of the first IMF to control
the choice of coding method and sampling rate used in the different blocks of the image.
In the first scheme, we use the empiquency of the first IMF to control the variable sam-
pling of the image itself. In our second approach we apply quantization and entropy cod-
ing on the variable sampling components. Finally in our third scheme we use the
empiquency-controlled variable sampling together with DCT coding of the samples. 

10.1  Empiquency-controlled variable 
sampling of the original image
This approach is based on the variable sampling technique described in Chapter 7. The
difference is that the EMD process now stops when the first IMF has been found. The em-
piquency of the first IMF is used to control the subsampling of the image. 

Coder outline
The coder is shown in Figure 10.1. The details of the VS block are presented in
Figure 10.2. The first IMF is searched for extrema points and both the image itself and the
maximum empiquency image is decomposed into overlapping 7x7 pixel blocks, as de-
scribed in section 7.1.1. The value of the maximum empiquency found in the extrema
point image block determines the sampling rate for the subsampling of the corresponding
image block. The samples are quantized and Huffman coded. The details of the recon-
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struction block are shown in Figure 10.3. The two-bit header indicates the sampling rate.
With this information the components achieved from the stream can be placed in their
proper place in the 7x7 pixel block. The stream only contain samples for the 6x6 block,
the missing samples are found in the neighbouring blocks. The 7x7 blocks of samples are
interpolated and the nonoverlapping 6x6 part of the reconstructed block is used when
patching the blocks to reconstruct the image. 

EMD First IMF

MUX 

DEMUX 

Channel

Reconstruction

Decoder

Coder

Image

Image
Reconstructed

Figure 10.1. Empiquency controlled variable sampling scheme.

VS
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Figure 10.2. Details of the VS block.

Figure 10.3. Detail of the reconstruction block.

10.1.1  Results
The empiquency-controlled variable subsampling of the image is tested on the images
Detail one, Detail two, and Lenna128. The resulst of subsampling using zero zone 10 are
shown in Figure 10.4, Figure 10.5 and Figure 10.6 for the images, respectively. Only the
variable subsampling of the image renders compression to some degree. The image qual-
ity shown here is the best we can expect from the next two coders in this section as they
only differ in that they apply compression algorithms to the samples. 
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Figure 10.4. Variable sampling of Detail one, 34.60 dB at average sampling rate 0.71.

Figure 10.5. Variable sampling of Detail two, 32.93 dB at average sampling rate 0.86.

Figure 10.6. Variable sampling of Lenna128, 32.85 dB at average sampling rate 0.71.
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10.2  Empiquency-controlled entropy 
coded variable sampling (Entropy 
coded VS)
The structure of the variable sampling in section 10.1 is inherited in this coding approach.
The sampling process leaves us with a set of samples for each block which are quantized
and entropy coded using Huffman code or fixlength code. 

Coder outline
The coder is shown in Figure 10.7

The first IMF is searched for extrema points and as in previous schemes using variable
sampling, only the significant extrema points are kept for the definition of empiquency.
The details of the VS block are shown in Figure 10.2. Both the image itself and the ex-
trema point image are decomposed into overlapping 7x7pixel blocks as described in
section 7.1.1. The value of the maximum empiquency in the extrema point image block
decides the sampling rate for the subsampling of the corresponding image block. The
samples are represented by one sample alone or 6x6, 3x3, or 2x2 blocks of samples. A
two-bit header is added to the samples of each block to indicate the sampling rate of this
specific block.

The details of the reconstruction block are shown in Figure 10.3. The two-bit header
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Figure 10.7.  Coding scheme.
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indicates the sampling rate. With this information the components can be placed in their
proper place in the 7x7 pixel block. The stream only contains samples for the 6x6 block,
the missing samples are found in the reconstructed neighbouring blocks. The 7x7 blocks
of samples are interpolated and the nonoverlapping 6x6 part of the reconstructed block is
used to reconstruct the image. 

10.2.1  Results
The coder is tested on three different images, Detail one, Detail two, and Lenna128, using
zero zones 1, 10, and 20. The quantization varies from 256 levels to 4 levels. Figure 10.8,
Figure 10.9, and Figure 10.10, show the coding result for the images respectively, and in
Figure 10.11, Figure 10.12, and Figure 10.13, two example reconstructions for each im-
age are presented. 

Figure 10.8. Entropy coding result of Detail one. Zero zone=1, 10, 20; quantization varies from 
256 levels down to 4 levels
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Figure 10.9. Entropy coding result of Detail two. Zero zone=1, 10, 20; quantization varies from 
256 levels down to 4 levels

Figure 10.10. Entropy coding result of Lenna128. Zero zone=1, 10, 20; quantization varies from 
256 levels down to 4 levels
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Figure 10.11. Entropy coded VS of Detail one: a) 4.00 bpp 34.38 dB, b) 1.15 bpp 26.90 dB

Figure 10.12. Entropy coded VS of Detail two: a) 4.07 bpp 32.34 dB, b) 1.80 bpp 28.41 dB

Figure 10.13. Entropy coded VS of Lenna128: a) 3.31 bpp 32.56 dB, b) 1.90 bpp 28.96dB.

a b

a b

a b
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10.3  Empiquency-controlled image 
coding using variable sampling and 
DCT coding (VSDCT)
The structure of the variable sampling in section 10.1 is inherited in this coding approach.
The sampling process leaves us with a set of samples for each block which are squeezed
into blocks of smaller size and DCT coded. The DCT components are then quantized and
thresholded. 

Coder outline
The VSDCT coder is shown in Figure 10.14

The first IMF is searched for extrema points and as in previous schemes using variable
sampling, only the significant extrema points are kept for the definition of empiquency.
The details of the VS+DCT block are shown in Figure 10.15. Both the image itself and
the extrema point image are decomposed into overlapping 7x7 pixel blocks as described
in section 7.1.1. The value of the maximum empiquency in the extrema point image block
decides the sampling rate for the subsampling of the corresponding image block. The
samples are represented by one sample alone or 6x6, 3x3, or 2x2 blocks of samples. These
are DCT coded and the components are quantized and thresholded before the two-bit
block header is added. 
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Coding

Source 
Decoding
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Reconstruction
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Coder

Image

Image
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Figure 10.14. VSDCT coding scheme.

VS+DCT
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The details of the reconstruction block are shown in Figure 10.16. The two-bit header
indicates the sampling rate. With this information the components achieved from the in-
verse DCT transform of the stream can be placed in their proper place in the 7x7 pixel
block. The stream only contains samples for the 6x6 block, the missing samples are found
in the reconstructed neighbouring blocks. The 7x7 blocks of samples are interpolated and
the nonoverlapping 6x6 part of the reconstructed block is used to reconstruct the image. 

Figure 10.15. Detail of the VS+DCT coding block.

Figure 10.16. Details of the reconstruction block.

10.3.1  Results
The VSDCT coder is tested on three different images: Detail one, Detail two, and
Lenna128, using zero zone 1, 10, and 20. The quantization varies from 256 levels to 8
levels. The DCT components are thresholded. The threshold varies from 0.1% to 100%
of the maximum value. Figure 10.17, Figure 10.18, and Figure 10.19, show the coding
result for the images respectively, and in Figure 10.20, Figure 10.21, and Figure 10.22,
two example reconstructions for each image are presented. We see that this coder gives
good compression results for bitrates around 1 bpp.
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Figure 10.17. The result of using VSDCT coder on the Detail one image. 

Figure 10.18. The result of using the VSDCT coder on the Detail two image.
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Figure 10.19. The result of using the VSDCT coder on the Lenna128 image.



10.3 Empiquency-controlled image coding using variable sampling and DCT coding

191

Figure 10.20. VSDCT of Detail one: a) 1.17 bpp 33.83 dB, b) 0.37 bpp 31.04 dB

Figure 10.21. VSDCT of Detail two: a) 1.33 bpp 33.28 dB, b) 0.43 bpp 30.17 dB

Figure 10.22. VSDCT of Lenna128: a) 1.35 bpp 28.93 dB, b) 0.66 bpp 21.17 dB.

a b

a b

a b
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10.4  Summary
In this chapter we have presented new methods to code an image using the blockbased
variable sampling. The EMD is only used to find the first IMF. The empiquency of the
first IMF is used to control the choice of coding method and sampling rate used in the
different image blocks. First the empiquency of the first IMF was used to control the var-
iable sampling of the image itself. This gives us the limit of the performance we can ex-
pect from the other coders tested. The variable subsampling of the image render
compression to some degree. This is the basis for using the empiquency-controlled vari-
able sampling together with two different entropy coders and the empiquency-controlled
variable sampling together with DCT coding of the samples. The key results from each
coder are summarized in Figure 10.23, Figure 10.24, and Figure 10.25. 

Figure 10.23. Summary of results from the different coders applied to the Detail one image.
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Figure 10.24. Summary of results from the different coders applied to the Detail two image.

Figure 10.25. Summary of results from the different coders applied to the Lenna128 image.
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Chapter 11. 

Summary and Discussion

In this chapter we summarize the work in the second part of this thesis, trying to put it in
a wider perspective, discussing the results and relating the work to the work of others.

11.1  EMD 
The second part of this thesis discusses the Empirical Mode Decomposition (EMD),
which is an adaptive decomposition with which any complicated signal can be decom-
posed into its Intrinsic Mode Functions (IMF), corresponding to the physical reality that
generated the signal [36]. The purpose of the work on EMD on time signals in this thesis
is to introduce the EMD concept.

An IMF is characterized by some specific properties. One is that the number of zero
crossings and the number of extrema points are equal or differ only by one. Another prop-
erty of the IMF is that the envelopes defined by the local maxima and minima, respective-
ly, are locally symmetric around the envelope mean. The original purpose for the EMD
was to find a decomposition which made it possible to use the instantaneous frequency,
defined as the derivative of the phase of an analytic signal, in the time frequency analysis
of the signal. Traditional Fourier analysis does not allow a signal's spectrum to change
over time. The EMD, however, provides a decomposition method that analyses the signal
locally. The use of EMD in the Hilbert-Huang Transform (HHT) [36] is viewed as an ex-
ample of EMD for time signals. Different interpolation methods are discussed for time
signals as an introduction to the same problem for images. 

Previous work often mention the lack of a mathematical formalism to describe the
EMD, the concept is truly empirical. In this thesis we keep the empirical approach as we
extend the EMD concept into two dimensions.

The sifting process of [36] is here extended and given a more strict formulation in two
dimensions.

The behaviour of the EMD as a filter bank is highlighted in Flandrin et al. [26] through
the analysis of noise. The first IMF resemble a “high-pass filtered” noise signal. The rest
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of the IMFs resembles “band-bass filtered” noise signals with their centre frequency de-
creasing in an octave band manner, just like a filter bank. The experiment shows that the
EMD sorts the energy of the signal similarly to a subband coder. The same can be seen
when EMD is applied to images. The tendency is that the IMFs other than the first are
low frequency images. By examining of the DCT of the whole image we see that for the
first IMF the energy is spread all over the matrix, with a highlight in the centre part rep-
resenting the dominating spatial frequencies. For the subsequent IMFs and the residue the
energy concentrates in the upper left corner, where it represents low frequency. 

Some implementations of the EMD in two dimensions generate a residue with many
extrema points [51,62,63]. These methods have not proven capable of fully decomposing
the two-dimensional signal down to a residue with a low number of extrema points. In
this thesis we present an improved method that can decompose the image into a number
of IMFs and a residue with none, or with only a few extrema points. This method makes
it possible to use the EMD for image processing.

For two-dimensional signals there are several possibilities to define extrema, each
one yielding a different decomposition. In this thesis the extrema points are simply ex-
tracted by comparing the candidate data point with its nearest 8-connected neighbours.
Clearly, more sophisticated methods could be used, but the extrema points defined by an
8-connected neighbourhood serve the purpose for EMD at this stage, with further im-
provement being possible. In Nunes et al. [63] the extrema points are selected using mor-
phological reconstruction. Neither of these methods allow for saddle points to be
considered as extrema points. Nunes et al. proposed the use of a watershed operation to
find these extrema points in the future [63]. In this thesis we note that in the case where
saddle points are considered to be extrema points, these are both maxima and minima at
the same point. This nails the saddle point to the zero mean level in the first sifting round.
For this reason, saddle points are not considered to be extrema points. Future work may
find methods for extrema point extraction that could also handle saddle points.

In the second step in the sifting process the problem is to fit a surface to the two-di-
mensional scattered data points representing the extrema points. The interpolated surface
must go through each data point. Overshot shall be avoided and the second derivative
must be continuous everywhere for the signal to be smooth enough for two-dimensional
EMD. The interpolation methods considered here are triangle-based cubic spline interpo-
lation and thin-plate smoothing spline interpolation. The first is an example of an inter-
polation method using a piecewise approach to interpolate the surface. It produces piece-
wise smooth surfaces and is based on Delaunay triangulation [67] of the data. The piece-
wise approach causes more problems in the two-dimensional case than with one-dimen-
sional signals. Even though the interpolators have continuous second derivatives, such as
the cubic spline in [51] or the radial basis functions used in [63], the borders of the neigh-
bouring pieces cause problems. It is possible that the piece-wise approach will work if
we use another set of extrema points where the saddle points are included. This is not ex-
amined in this thesis but is left to future work. 

The border constraints are even more important in two dimensions than they are in
the one-dimensional EMD case and are the main objection to using spline interpolation
in the EMD for two-dimensional signals. The set of extrema points is very sparse and
since the interpolation methods only interpolate between these points, the borders need
special care. In this thesis we introduce the trick of adding extra data points at the borders
to the set of extrema points. These extra points are placed at the corners of the image and
equally spaced around the border. Without these extra points, the areas not covered by
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the interpolation traverse into the image in the sifting process.
In this thesis the thin-plate smoothing spline interpolation [8] is suggested for two-di-

mensional EMD analysis. This algorithm calculates the surface over the entire image and
gives a surface with continuous second derivatives everywhere. The determination of the
smoothing spline involves the solution of a linear system with as many unknowns as there
are data points. This method turns out to successfully decompose an image into its IMFs
and a smooth residue with no or only a few extrema points. 

In [36] the sifting process stops when the difference between two consecutive siftings
is smaller than a selected threshold. In this thesis the process stops when the envelope
mean signal is close enough to zero as suggested in Linderhed [51]. The reason for this
choice is that forcing the envelope mean to zero will guarantee the symmetry of the en-
velope and the correct relation between the number of zero crossings and number of ex-
tremes that define the IMF. A slightly more complicated version of this stop criterion is
presented in Rilling et al. [73] along with a discussion of typical values on the threshold.
The number of IMFs achieved with the EMD depends on the choice of value of the stop
criterion. If it is too large, the number of IMFs is lower. If it is too small, the number of
IMFs is large enough but computation time is longer than necessary.

11.2  Empiquency
The EMD is a truly empirical method, not based on the Fourier frequency approach but
related to the locations of extrema points and zero-crossings. Using the EMD for signal
analysis requires a mind free from the traditional Fourier-based frequency concept. Based
on this we introduce the concept of empiquency [53], short for empirical mode frequency,
instead of a traditional Fourier-based frequency measure to describe the signal oscilla-
tions. The measure of empiquency is defined as “One half the reciprocal distance between
two consecutive extrema points”. With this definition the values relate to normalized fre-
quency used with discrete Fourier transform. We define d to be the distance between two
neighbouring extrema points. In [36] the concept of time scale is used to describe the sig-
nal oscillations. In relation to empiquency this can be seen as the mean of all d in the sig-
nal. In this context the empiquency is the local time scale. 

The IMF have the very special property of being locally zero mean and ideally having
not more than one extrema point between two neighbouring zero-crossings. Because of
this relationship between zero-crossings and extrema points there is also a relation be-
tween the empiquency, time scale, and the concept of sequency [31]. Sequency is defined
as, “the average number of zero crossings per second divided by 2”. For a sine or cosine
the frequency and the sequency are the same, but the concept of sequency has a meaning
for other signals such as Walsh functions or IMF as well. There is a possibility that the
mathematical theory developed for sequency could be used for the development of math-
ematical methods for EMD. This idea is not further treated in this thesis but left to future
work. 

The empiquency value is assigned to every position between the two extrema points
used to compute it. Each extrema point influences more than one set of empiquency def-
initions. We let it take the highest value of the empiquency values it defines. The em-
piquency is accompanied by an amplitude describing the signal at the actual position. At
each extrema point the empiquency amplitude Ae is the absolute value of the extrema
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point. At any other position the empiquency amplitude takes the value of the absolute
mean of the extrema points that define the empiquency for the actual position. The em-
piquency concept will be further developed towards a texture analysis tool. In the image
coding applications in this thesis the empiquency is only used as an indication of the
highest spatial frequency present in the block to be coded. 

In this thesis we have also discussed the selection of significant extrema points. This
has turned out to be essential for image compression with EMD similar to the definition
of significant coefficients in zerotree coding [75]. The selection of significant extrema
points can also be used as a tool for noise reduction.

11.3  Variable sampling
It is known [59,35] that a band-limited signal can be uniquely determined from its non-
uniform samples, provided that the average sampling rate exceeds the Nyquist rate. From
this we assume that the IMF can be subsampled with special requirements on the sam-
pling rate and that this rate is given by the maximum empiquency. 

The special property of the IMF, namely that the empiquency varies, is used for var-
iable sampling. The IMFs are smoother than the image itself; only the first IMF holds the
nonsmooth parts of the image. This means that it should be possible to subsample the IM-
Fs. Due to the different empiquencies in the different parts of the IMF, the subsampling
should vary. The extrema points define the maximum empiquency in the IMF. Maximum
empiquency is found by examining the space between these points. In the first IMF there
are often areas where two neighbouring pixels both are extrema points, thus the maxi-
mum empiquency is 0.5. Letting this define our Nyquist bandwidth, we expect that it is
not possible to subsample this IMF without distortion. Our suggestion is to treat the IMF
block wise. This way the sampling rate for each block can be defined according to its em-
piquency content. The high empiquency blocks which cannot be subsampled according
to our criterion are not modified. The remaining ones are subsampled. 

Another proposal for variable sampling of an image is presented in [7], where an im-
age coder based on non-uniform sampling of the image is presented. The sampling rate
was determined by the complexity of the region. The use of Delaunay triangulation to-
gether with irregular sampling of an image is presented in Rila [72] in an image coding
approach with promising results. 

In this thesis we use overlapping blocks of size 7x7 pixels to minimize the artifacts
from the blocking and to further reduce the samples used to represent the IMF. The cor-
ners of the block are always represented. The overlapping pixels in two neighbouring
blocks will be the same, but used twice. This will ensure that the concatenated blocks
have the same values at the edge pixels. The overlapping pixels will only belong to one
of the blocks when patching together the reconstructed image.

In our EMD image coding proposals the image content steers the choice of method
for each part of the image. This is the opposite of dynamic coding [27,24] where the se-
lection is guided by the coding result. Dynamic coding deals with coding of images in
which multiple coding schemes are used in different regions of an image. 
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11.4  EMD image coding 
The image compression efforts in this work can be divided into two groups. The first
group of methods use the full EMD, the image is decomposed down to a residue with only
a few extrema points. The second group of methods use an EMD where only the first IMF
is computed. 

In the first group of methods we have: 
Entropy coding of the EMD
Extrema Point Coder
Block-based DCT
Threshold coding of the full size DCT
VSDCTEMD
The first attempt to use the EMD for compression was the Extrema Point Coder [51].

This method is examined in this thesis both for time signals and images. The method of
representing the IMF with its extrema points gives good visual performance but needs
many extrema points for the representation of the first IMF and the coding of positions of
these generate a high bitrate. 

The block-based DCT is an attempt to use the property of the IMF that only one em-
piquency is present at each position. Using only one or two of the DCT components for
each block in the representation gives bitrate and distortion measures that are acceptable
but the visual performance suffers from severe blocking artifacts. 

The Threshold DCT method works on the whole IMF and takes advantage of the en-
ergy compaction ability of the EMD. The energy of the IMFs other than the first IMF is
concentrated in the low frequency regions and thus the rest of the frequency components
can be left out of the representation of the EMD. Even for the first IMF this method gives
acceptable distortion, both in terms of PSNR measure and visual performance, with bi-
trates below 2bpp. For the rest of the IMFs we have good performance at bitrates way be-
low 1 bpp. 

The variable sampling presents a promising method to treat the EMD. The structure
of the variable sampling is inherited in the VSDCTEMD coding approach. The sampling
process applied on each IMF and the residue leaves us with a reduced number of samples
for each block. These can be squeezed into blocks of smaller sizes which can be DCT cod-
ed. The DCT components are then quantized and thresholded, leaving us with even fewer
components to represent the block. The DCT coding of the block samples provides a sig-
nificant compression of the variable sampled IMFs.

For image coding purposes there is no need to decompose the image into a full EMD.
The second group of image compression methods use the empiquency of the first IMF to
control the choice of coding method used in the different blocks of the image. The meth-
ods that we have developed are: 

Entropy coded VS
VSDCTEMD+Threshold DCT
VSDCT

These new methods to code an image use the block-based variable sampling controlled
by the first IMF. With the VS method we start with using the empiquency of the first IMF
to control the variable sampling of the image. The image quality shown here is the best
we can expect compared to the remaining coders in this section as they only differ in that
they further compress the samples. 

Threshold coding gives a very compact representation of the residue. Together with
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the VSDCTEMD on the first IMF the compression result is very good at bitrates around
1 bpp. 

The structure of the variable sampling is inherited in the VSDCT coding approach.
The first IMF controls the sampling rate of the image block. The set of samples for each
block left by the sampling process are squeezed into blocks of smaller size and DCT cod-
ed. The DCT components are then quantized and thresholded. For the VSDCT the com-
pression result is also very good at bitrates around 1 bpp. This coder performs slightly
better than the use of VSDCTEMD together with the Threshold DCT

The coders presented in this thesis are only early examples of image coding algo-
rithms using the EMD. There is still much room for improvement and new ideas. A sim-
ilar image compression method, but still totally different, is the multi-layered image
representation of Meyer et al. [60], where the detail image is produced with a wavelet
packet method, compressed and subtracted from the image to create a residue. This is it-
erated to produce subsequent residues. In this method the detail is contained in the resi-
due images instead of in the IMFs. Apart from that difference it seems likely that new
EMD compression algorithms will be influenced by the work on multi-layered coding.

11.5  Open problems
The work in this thesis was prompted by a central question: how to find, and use for com-
pression, an adaptive decomposition of images. The work has found some answers but
generated even more questions. Some of the problems raised from the work in this thesis
but still unsolved are listed here.

• Develop the relation between the sequency and empiquency. 

• Develop better algorithms for extrema point selection, that can handle saddle
points.

• Use different sampling rates for horizontal and vertical in the variable sampling.

• Develop the compression algorithms further.

• Develop EMD for texture analysis. 
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Appendix A

In this appendix the 17 samples of Brodatz texture images used in these experiments are
presented.

Figure A.1. The 17 samples of Brodatz texture images used in these experiments.
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Appendix B

This appendix shows further parts of the triplet database. The textures in Figure B.1 are
used as test images. Here, cost functions are varied for different typer of filters. 

Figure B.1. The images bark, brickwall, cslfleath, from left to right.

Figure B.2. The bark image decomposed with the Haar filter and the cost function is varied. The 
cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost of 

coding the coefficients of the corresponding wavelet basis is marked by x.
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Figure B.3. The best basis for the triplet filter Haar, image bark, and cost function hest, defined in 
Eq. 4.42). The estimated entropy shows in position 2 in Figure B. 2. 

Figure B.4. The best basis for the triplet filter Haar, image bark, and cost function n1, defined in 
Eq. 4.44). The estimated entropy shows in position 4 in Figure B. 2. 
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Figure B.5. The bark image decomposed with the filter bior1.5 and the cost function is varied. The 
cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost of 

coding the coefficients of the corresponding wavelet basis is marked by x.

Figure B.6. The best basis for the triplet filter bior1.5, image bark, and cost function log, defined in 
Eq. 4.43).The estimated entropy shows in position 3 in Figure B. 5.

1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

sh hest log n1 n12 n14 n16 n18 n199

bior1.5bark

(0,0)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (2,10) (2,11) (2,12) (2,13) (2,14) (2,15)

(3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)(3,8)(3,9)(3,10)(3,11)(3,12)(3,13)(3,14)(3,15)(3,16)(3,17)(3,18)(3,19)(3,20)(3,21)(3,22)(3,23)(3,24)(3,25)(3,26)(3,27)(3,28)(3,29)(3,30)(3,31)(3,32)(3,33)(3,34)(3,35)(3,36)(3,37)(3,38)(3,39)(3,40)(3,41)(3,42)(3,43)(3,44)(3,45)(3,46)(3,47)(3,48)(3,49)(3,50)(3,51)(3,52)(3,53)(3,54)(3,55)(3,56)(3,57)(3,58)(3,59)(3,60)(3,61)(3,62)(3,63

(4,0)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7)(4,8)(4,9)(4,10)(4,11)(4,12)(4,13)(4,14)(4,15)(4,16)(4,17)(4,18)(4,19)(4,20)(4,21)(4,22)(4,23)(4,24)(4,25)(4,26)(4,27)(4,28)(4,29)(4,30)(4,31)(4,32)(4,33)(4,34)(4,35)(4,36)(4,37)(4,38)(4,39)(4,44)(4,45)(4,46)(4,47)(4,48)(4,49)(4,50)(4,51)(4,52)(4,53)(4,54)(4,55)(4,56)(4,57)(4,58)(4,59)(4,60)(4,61)(4,62)(4,63)(4,64)(4,65)(4,66)(4,67)(4,68)(4,69)(4,70)(4,71)(4,72)(4,73)(4,74)(4,75)(4,76)(4,77)(4,78)(4,79)(4,80)(4,81)(4,82)(4,83)(4,84)(4,85)(4,86)(4,87)(4,88)(4,89)(4,90)(4,91)(4,92)(4,93)(4,94)(4,95)(4,96)(4,97)(4,98)(4,99)(4,100)(4,101)(4,102)(4,103)(4,104)(4,105)(4,106)(4,107)(4,108)(4,109)(4,110)(4,111)(4,112)(4,113)(4,114)(4,115)(4,116)(4,117)(4,118)(4,119)(4,120)(4,121)(4,122)(4,123)(4,124)(4,125)(4,126)(4,127)(4,128)(4,129)(4,130)(4,131)(4,132)(4,133)(4,134)(4,135)(4,136)(4,137)(4,138)(4,139)(4,140)(4,141)(4,142)(4,143)(4,144)(4,145)(4,146)(4,147)(4,148)(4,149)(4,150)(4,151)(4,152)(4,153)(4,154)(4,155)(4,156)(4,157)(4,158)(4,159)(4,160)(4,161)(4,162)(4,163)(4,164)(4,165)(4,166)(4,167)(4,168)(4,169)(4,170)(4,171)(4,172)(4,173)(4,174)(4,175)(4,176)(4,177)(4,178)(4,179)(4,180)(4,181)(4,182)(4,183)(4,184)(4,185)(4,186)(4,187)(4,188)(4,189)(4,190)(4,191)(4,192)(4,193)(4,194)(4,195)(4,196)(4,197)(4,198)(4,199)(4,200)(4,201)(4,202)(4,203)(4,204)(4,205)(4,206)(4,207)(4,208)(4,209)(4,210)(4,211)(4,212)(4,213)(4,214)(4,215)(4,216)(4,217)(4,218)(4,219)(4,220)(4,221)(4,222)(4,223)(4,224)(4,225)(4,226)(4,227)(4,228)(4,229)(4,230)(4,231)(4,232)(4,233)(4,234)(4,235)(4,236)(4,237)(4,238)(4,239)(4,240)(4,241)(4,242)(4,243)(4,244)(4,245)(4,246)(4,247)(4,248)(4,249)(4,250)(4,251(4,252(4,253(4,25(4,25

(5,0)(5,1)(5,2)(5,3)(5,16)(5,17)(5,18)(5,19)(5,24)(5,25)(5,26)(5,27)(5,32)(5,33)(5,34)(5,35)(5,36)(5,37)(5,38)(5,39)(5,48)(5,49)(5,50)(5,51)(5,52)(5,53)(5,54)(5,55)(5,56)(5,57)(5,58)(5,59)(5,64)(5,65)(5,66)(5,67)(5,72)(5,73)(5,74)(5,75)(5,80)(5,81)(5,82)(5,83)(5,96)(5,97)(5,98)(5,99)(5,100)(5,101)(5,102)(5,103)(5,104)(5,105)(5,106)(5,107)(5,108)(5,109)(5,110)(5,111)(5,112)(5,113)(5,114)(5,115)(5,116)(5,117)(5,118)(5,119)(5,120)(5,121)(5,122)(5,123)(5,124)(5,125)(5,126)(5,127)(5,128)(5,129)(5,130)(5,131)(5,132)(5,133)(5,134)(5,135)(5,144)(5,145)(5,146)(5,147)(5,148)(5,149)(5,150)(5,151)(5,152)(5,153)(5,154)(5,155)(5,156)(5,157)(5,158)(5,159)(5,176)(5,177)(5,178)(5,179)(5,180)(5,181)(5,182)(5,183)(5,184)(5,185)(5,186)(5,187)(5,188)(5,189)(5,190)(5,191)(5,192)(5,193)(5,194)(5,195)(5,196)(5,197)(5,198)(5,199)(5,200)(5,201)(5,202)(5,203)(5,204)(5,205)(5,206)(5,207)(5,208)(5,209)(5,210)(5,211)(5,212)(5,213)(5,214)(5,215)(5,216)(5,217)(5,218)(5,219)(5,220)(5,221)(5,222)(5,223)(5,224)(5,225)(5,226)(5,227)(5,228)(5,229)(5,230)(5,231)(5,232)(5,233)(5,234)(5,235)(5,236)(5,237)(5,238)(5,239)(5,240)(5,241)(5,242)(5,243)(5,244)(5,245)(5,246)(5,247)(5,248)(5,249)(5,250)(5,251)(5,256)(5,257)(5,258)(5,259)(5,260)(5,261)(5,262)(5,263)(5,264)(5,265)(5,266)(5,267)(5,272)(5,273)(5,274)(5,275)(5,276)(5,277)(5,278)(5,279)(5,280)(5,281)(5,282)(5,283)(5,284)(5,285)(5,286)(5,287)(5,288)(5,289)(5,290)(5,291)(5,292)(5,293)(5,294)(5,295)(5,296)(5,297)(5,298)(5,299)(5,300)(5,301)(5,302)(5,303)(5,304)(5,305)(5,306)(5,307)(5,308)(5,309)(5,310)(5,311)(5,312)(5,313)(5,314)(5,315)(5,316)(5,317)(5,318)(5,319)(5,320)(5,321)(5,322)(5,323)(5,324)(5,325)(5,326)(5,327)(5,328)(5,329)(5,330)(5,331)(5,332)(5,333)(5,334)(5,335)(5,336)(5,337)(5,338)(5,339)(5,340)(5,341)(5,342)(5,343)(5,344)(5,345)(5,346)(5,347)(5,352)(5,353)(5,354)(5,355)(5,356)(5,357)(5,358)(5,359)(5,360)(5,361)(5,362)(5,363)(5,364)(5,365)(5,366)(5,367)(5,368)(5,369)(5,370)(5,371)(5,372)(5,373)(5,374)(5,375)(5,376)(5,377)(5,378)(5,379)(5,380)(5,381)(5,382)(5,383)(5,384)(5,385)(5,386)(5,387)(5,388)(5,389)(5,390)(5,391)(5,392)(5,393)(5,394)(5,395)(5,396)(5,397)(5,398)(5,399)(5,400)(5,401)(5,402)(5,403)(5,404)(5,405)(5,406)(5,407)(5,408)(5,409)(5,410)(5,411)(5,412)(5,413)(5,414)(5,415)(5,416)(5,417)(5,418)(5,419)(5,420)(5,421)(5,422)(5,423)(5,424)(5,425)(5,426)(5,427)(5,428)(5,429)(5,430)(5,431)(5,432)(5,433)(5,434)(5,435)(5,436)(5,437)(5,438)(5,439)(5,440)(5,441)(5,442)(5,443)(5,444)(5,445)(5,446)(5,447)(5,448)(5,449)(5,450)(5,451)(5,452)(5,453)(5,454)(5,455)(5,456)(5,457)(5,458)(5,459)(5,460)(5,461)(5,462)(5,463)(5,464)(5,465)(5,466)(5,467)(5,468)(5,469)(5,470)(5,471)(5,472)(5,473)(5,474)(5,475)(5,476)(5,477)(5,478)(5,479)(5,480)(5,481)(5,482)(5,483)(5,484)(5,485)(5,486)(5,487)(5,488)(5,489)(5,490)(5,491)(5,492)(5,493)(5,494)(5,495)(5,496)(5,497)(5,498)(5,499)(5,500)(5,501)(5,502)(5,503)(5,504)(5,505)(5,506)(5,507)(5,508)(5,509)(5,510)(5,511)(5,512)(5,513)(5,514)(5,515)(5,516)(5,517)(5,518)(5,519)(5,528)(5,529)(5,530)(5,531)(5,532)(5,533)(5,534)(5,535)(5,536)(5,537)(5,538)(5,539)(5,540)(5,541)(5,542)(5,543)(5,544)(5,545)(5,546)(5,547)(5,548)(5,549)(5,550)(5,551)(5,552)(5,553)(5,554)(5,555)(5,556)(5,557)(5,558)(5,559)(5,560)(5,561)(5,562)(5,563)(5,564)(5,565)(5,566)(5,567)(5,568)(5,569)(5,570)(5,571)(5,572)(5,573)(5,574)(5,575)(5,576)(5,577)(5,578)(5,579)(5,580)(5,581)(5,582)(5,583)(5,584)(5,585)(5,586)(5,587)(5,588)(5,589)(5,590)(5,591)(5,592)(5,593)(5,594)(5,595)(5,596)(5,597)(5,598)(5,599)(5,600)(5,601)(5,602)(5,603)(5,604)(5,605)(5,606)(5,607)(5,608)(5,609)(5,610)(5,611)(5,612)(5,613)(5,614)(5,615)(5,616)(5,617)(5,618)(5,619)(5,620)(5,621)(5,622)(5,623)(5,624)(5,625)(5,626)(5,627)(5,628)(5,629)(5,630)(5,631)(5,632)(5,633)(5,634)(5,635)(5,636)(5,637)(5,638)(5,639)(5,640)(5,641)(5,642)(5,643)(5,644)(5,645)(5,646)(5,647)(5,648)(5,649)(5,650)(5,651)(5,656)(5,657)(5,658)(5,659)(5,660)(5,661)(5,662)(5,663)(5,664)(5,665)(5,666)(5,667)(5,668)(5,669)(5,670)(5,671)(5,672)(5,673)(5,674)(5,675)(5,676)(5,677)(5,678)(5,679)(5,680)(5,681)(5,682)(5,683)(5,688)(5,689)(5,690)(5,691)(5,692)(5,693)(5,694)(5,695)(5,696)(5,697)(5,698)(5,699)(5,700)(5,701)(5,702)(5,703)(5,704)(5,705)(5,706)(5,707)(5,708)(5,709)(5,710)(5,711)(5,712)(5,713)(5,714)(5,715)(5,716)(5,717)(5,718)(5,719)(5,720)(5,721)(5,722)(5,723)(5,724)(5,725)(5,726)(5,727)(5,728)(5,729)(5,730)(5,731)(5,732)(5,733)(5,734)(5,735)(5,736)(5,737)(5,738)(5,739)(5,740)(5,741)(5,742)(5,743)(5,744)(5,745)(5,746)(5,747)(5,748)(5,749)(5,750)(5,751)(5,752)(5,753)(5,754)(5,755)(5,756)(5,757)(5,758)(5,759)(5,760)(5,761)(5,762)(5,763)(5,764)(5,765)(5,766)(5,767)(5,768)(5,769)(5,770)(5,771)(5,772)(5,773)(5,774)(5,775)(5,776)(5,777)(5,778)(5,779)(5,780)(5,781)(5,782)(5,783)(5,784)(5,785)(5,786)(5,787)(5,788)(5,789)(5,790)(5,791)(5,792)(5,793)(5,794)(5,795)(5,796)(5,797)(5,798)(5,799)(5,800)(5,801)(5,802)(5,803)(5,804)(5,805)(5,806)(5,807)(5,808)(5,809)(5,810)(5,811)(5,812)(5,813)(5,814)(5,815)(5,816)(5,817)(5,818)(5,819)(5,820)(5,821)(5,822)(5,823)(5,824)(5,825)(5,826)(5,827)(5,828)(5,829)(5,830)(5,831)(5,832)(5,833)(5,834)(5,835)(5,836)(5,837)(5,838)(5,839)(5,840)(5,841)(5,842)(5,843)(5,844)(5,845)(5,846)(5,847)(5,848)(5,849)(5,850)(5,851)(5,852)(5,853)(5,854)(5,855)(5,856)(5,857)(5,858)(5,859)(5,860)(5,861)(5,862)(5,863)(5,864)(5,865)(5,866)(5,867)(5,868)(5,869)(5,870)(5,871)(5,872)(5,873)(5,874)(5,875)(5,876)(5,877)(5,878)(5,879)(5,880)(5,881)(5,882)(5,883)(5,884)(5,885)(5,886)(5,887)(5,888)(5,889)(5,890)(5,891)(5,892)(5,893)(5,894)(5,895)(5,896)(5,897)(5,898)(5,899)(5,900)(5,901)(5,902)(5,903)(5,904)(5,905)(5,906)(5,907)(5,908)(5,909)(5,910)(5,911)(5,912)(5,913)(5,914)(5,915)(5,916)(5,917)(5,918)(5,919)(5,920)(5,921)(5,922)(5,923)(5,924)(5,925)(5,926)(5,927)(5,928)(5,929)(5,930)(5,931)(5,932)(5,933)(5,934)(5,935)(5,936)(5,937)(5,938)(5,939)(5,940)(5,941)(5,942)(5,943)(5,944)(5,945)(5,946)(5,947)(5,948)(5,949)(5,950)(5,951)(5,952)(5,953)(5,954)(5,955)(5,956)(5,957)(5,958)(5,959)(5,960)(5,961)(5,962)(5,963)(5,964)(5,965)(5,966)(5,967)(5,968)(5,969)(5,970)(5,971)(5,972)(5,973)(5,974)(5,975)(5,976)(5,977)(5,978)(5,979)(5,980)(5,981)(5,982)(5,983)(5,984)(5,985)(5,986)(5,987)(5,988)(5,989)(5,990)(5,991)(5,992)(5,993)(5,994)(5,995)(5,996)(5,997)(5,998)(5,999)(5,1000(5,1001(5,1002(5,1003(5,1004(5,1005(5,1006(5,1007(5,1008(5,100(5,101(5,101(5,101(5,101(5,101(5,101(5,101(5,101(5,101(5,10(5,10(5,10(5,10(5,10



 Appendix B

206

Figure B.7. The best basis for the triplet filter bior1.5, image bark, and cost function n1, defined in 
Eq. 4.44). The estimated entropy shows in position 4 in Figure B. 5. 

Figure B.8. The bark image decomposed with the db4 filter and the cost function is varied. The 
cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost of 

coding the coefficients of the corresponding wavelet basis is marked by x. 
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Figure B.9. The best basis for the triplet filter db4, image bark, and cost function hest, defined in 
Eq. 4.42). The estimated entropy shows in position 2 in Figure B. 8. 

Figure B.10. The best basis for the triplet filter db4, image bark, and cost function log, defined in 
Eq. 4.43). The estimated entropy shows in position 3 in Figure B. 8. 

Figure B.11. The best basis for the triplet filter db4, image bark, and cost function n1, defined in 
Eq. 4.44). The estimated entropy shows in position 4 in Figure B. 8. 
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Figure B.12. The brickwall image decomposed with the db4 filter and the cost function is varied. 
The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost 

of coding the coefficients of the corresponding wavelet basis is marked by x.

Figure B.13. The best basis for the triplet filter db4, image brickwall, and cost function hest, 
defined in Eq. 4.42). The estimated entropy shows in position 2 in Figure B. 12. 
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Figure B.14. The best basis for the triplet filter db4, image brickwall, and cost function n1, defined 
in Eq. 4.44). The estimated entropy shows in position 4 in Figure B. 12. 

Figure B.15. The cslfleath image decomposed with the db4 filter and the cost function is varied. 
The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost 

of coding the coefficients of the corresponding wavelet basis is marked by x.
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Figure B.16. The best basis for the triplet filter db4, image cslfleath, and cost function hest, 
defined in Eq. 4.42). The estimated entropy shows in position 2 in Figure B. 15. 

Figure B.17. The best basis for the triplet filter db4, image cslfleath, and cost function log, defined 
in Eq. 4.43). The estimated entropy shows in position 3 in Figure B. 15. 

Figure B.18. The best basis for the triplet filter db4, image cslfleath, and cost function n1, defined 
in Eq. 4.44). The estimated entropy shows in position 4 in Figure B. 15. 
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Next, filters are varied for different cost functions to show filter effects.

Figure B.19. The cslfleath image decomposed with varying filters and the cost function hest is 
used. The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the 

cost of coding the coefficients of the corresponding wavelet basis is marked by x.

Figure B.20. The brickwall image decomposed with varying filters, using the cost function hest. 
The cost of coding the coefficients of the  best basis is marked by o and the cost of coding the 

coefficients of the corresponding wavelet basis is marked by x.
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Figure B.21. The Bark image decomposed with varying filters and the cost function log is used. 
The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost 

of coding the coefficients of the corresponding wavelet basis is marked by x.

Figure B.22. The brickwall image decomposed with varying filters and the cost function log is 
used. The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the 

cost of coding the coefficients of the corresponding wavelet basis is marked by x.
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Figure B.23. The cslfleath image decomposed with varying filters and the cost function log is used. 
The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost 

of coding the coefficients of the corresponding wavelet basis is marked by x.

Figure B.24. The Bark image decomposed with varying filters and the cost function n1 is used. 
The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the cost 

of coding the coefficients of the corresponding wavelet basis is marked by x.
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Figure B.25. The brickwall image decomposed with varying filters and the cost function n1 is 
used. The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the 

cost of coding the coefficients of the corresponding wavelet basis is marked by x

Figure B.26. The cslfleath image decomposed with varying filters and the cost function norm1 is 
used. The cost of coding the coefficients of the optimal wavelet packet basis is marked by o and the 

cost of coding the coefficients of the corresponding wavelet basis is marked by x
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Appendix C

Listing of filter coefficients

'haar'
LO_D = 0.7071    0.7071 
HI_D =-0.7071    0.7071
LO_R = 0.7071    0.7071
HI_R = 0.7071   -0.7071

‘db2'
LO_D = -0.1294    0.2241    0.8365    0.4830
HI_D = -0.4830    0.8365   -0.2241   -0.1294
LO_R = 0.4830    0.8365    0.2241   -0.1294
HI_R = -0.1294   -0.2241    0.8365   -0.4830

'db4'
LO_D = -0.0106    0.0329    0.0308   -0.1870   -0.0280    0.6309    0.7148 0.2304
HI_D = -0.2304    0.7148   -0.6309   -0.0280    0.1870    0.0308   -0.0329 -0.0106
LO_R = 0.2304    0.7148    0.6309   -0.0280   -0.1870    0.0308    0.0329 -0.0106
HI_R = -0.0106   -0.0329    0.0308    0.1870   -0.0280   -0.6309    0.7148 -0.2304

'db6'
LO_D = -0.0011    0.0048    0.0006   -0.0316    0.0275    0.0975   -0.1298 -0.2263    0.3153    0.7511    

0.4946    0.1115
HI_D = -0.1115    0.4946   -0.7511    0.3153    0.2263   -0.1298   -0.0975 0.0275    0.0316    0.0006   -0.0048   

-0.0011
LO_R = 0.1115    0.4946    0.7511    0.3153   -0.2263   -0.1298    0.0975 0.0275   -0.0316    0.0006    0.0048   

-0.0011
HI_R = -0.0011   -0.0048    0.0006    0.0316    0.0275   -0.0975   -0.1298 0.2263    0.3153   -0.7511    0.4946   

-0.1115

'db8'
LO_D = -0.0001    0.0007   -0.0004   -0.0049    0.0087    0.0140   -0.0441 -0.0174    0.1287    0.0005   
-0.2840   -0.0158    0.5854    0.6756 0.3129    0.0544
HI_D = -0.0544    0.3129   -0.6756    0.5854    0.0158   -0.2840   -0.0005 0.1287    0.0174   -0.0441   
-0.0140    0.0087    0.0049   -0.0004 -0.0007   -0.0001
LO_R = 0.0544    0.3129    0.6756    0.5854   -0.0158   -0.2840    0.0005 0.1287   -0.0174   -0.0441    0.0140    

0.0087   -0.0049   -0.0004 0.0007   -0.0001
HI_R = -0.0001   -0.0007   -0.0004    0.0049    0.0087   -0.0140   -0.0441 0.0174    0.1287   -0.0005   
-0.2840    0.0158    0.5854   -0.6756 0.3129   -0.0544
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'bior1.5'
LO_D = 0.0166   -0.0166   -0.1215    0.1215    0.7071    0.7071    0.1215 -0.1215   -0.0166    0.0166
HI_D = 0         0         0         0   -0.7071    0.7071         0 0         0         0
LO_R = 0         0         0         0    0.7071    0.7071         0 0         0         0
HI_R = 0.0166    0.0166   -0.1215   -0.1215    0.7071   -0.7071    0.1215 0.1215   -0.0166   -0.0166

'bior2.8'
LO_D = 0    0.0015   -0.0030   -0.0129    0.0289    0.0530   -0.1349 -0.1638    0.4626    0.9516    0.4626   
-0.1638   -0.1349    0.0530 0.0289   -0.0129   -0.0030    0.0015
HI_D = 0         0         0         0         0         0         0 0.3536   -0.7071    0.3536         0         0         0         0 

0         0         0         0
LO_R = 0         0         0         0         0         0         0 0.3536    0.7071    0.3536         0         0         0         0 

0         0         0         0
HI_R = 0   -0.0015   -0.0030    0.0129    0.0289   -0.0530   -0.1349 0.1638    0.4626   -0.9516    0.4626    

0.1638   -0.1349   -0.0530 0.0289    0.0129   -0.0030   -0.0015

'bior3.5'
LO_D = -0.0138    0.0414    0.0525   -0.2679   -0.0718    0.9667    0.9667 -0.0718   -0.2679    0.0525    

0.0414   -0.0138 
HI_D = 0         0         0         0   -0.1768    0.5303   -0.5303 0.1768         0         0         0         0
LO_R = 0         0         0         0    0.1768    0.5303    0.5303 0.1768         0         0         0         0
HI_R = -0.0138   -0.0414    0.0525    0.2679   -0.0718   -0.9667    0.9667 0.0718   -0.2679   -0.0525    

0.0414    0.0138

'bior6.8'
LO_D = 0    0.0019   -0.0019   -0.0170    0.0119    0.0497   -0.0773 -0.0941    0.4208    0.8259    0.4208   
-0.0941   -0.0773    0.0497 0.0119   -0.0170   -0.0019    0.0019
HI_D = 0         0         0    0.0144   -0.0145   -0.0787    0.0404 0.4178   -0.7589    0.4178    0.0404   -0.0787   

-0.0145    0.0144 0         0         0         0
LO_R = 0         0         0    0.0144    0.0145   -0.0787   -0.0404 0.4178    0.7589    0.4178   -0.0404   -0.0787    

0.0145    0.0144 0         0         0         0
HI_R = 0   -0.0019   -0.0019    0.0170    0.0119   -0.0497   -0.0773 0.0941    0.4208   -0.8259    0.4208    

0.0941   -0.0773   -0.0497 0.0119    0.0170   -0.0019   -0.0019

'coif1'
LO_D = -0.0157   -0.0727    0.3849    0.8526    0.3379   -0.0727
HI_D = 0.0727    0.3379   -0.8526    0.3849    0.0727   -0.0157
LO_R = -0.0727    0.3379    0.8526    0.3849   -0.0727   -0.0157
HI_R = -0.0157    0.0727    0.3849   -0.8526    0.3379    0.0727

'coif2'
LO_D = -0.0007   -0.0018    0.0056    0.0237   -0.0594   -0.0765    0.4170 0.8127    0.3861   -0.0674   
-0.0415    0.0164
HI_D = -0.0164   -0.0415    0.0674    0.3861   -0.8127    0.4170    0.0765 -0.0594   -0.0237    0.0056    
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0.0018   -0.0007
LO_R = 0.0164   -0.0415   -0.0674    0.3861    0.8127    0.4170   -0.0765 -0.0594    0.0237    0.0056   
-0.0018   -0.0007
HI_R = -0.0007    0.0018    0.0056   -0.0237   -0.0594    0.0765    0.4170 -0.8127    0.3861    0.0674   
-0.0415   -0.0164

'coif5'
LO_D = 0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0001 0.0003   -0.0006   -0.0017    0.0024    

0.0068   -0.0092   -0.0198 0.0327    0.0413   -0.1056   -0.0620    0.4380    0.7743    0.4216 -0.0520   
-0.0919    0.0282    0.0234   -0.0101   -0.0042    0.0022 0.0004   -0.0002
HI_D = 0.0002    0.0004   -0.0022   -0.0042    0.0101    0.0234   -0.0282 -0.0919    0.0520    0.4216   
-0.7743    0.4380    0.0620   -0.1056 -0.0413    0.0327    0.0198   -0.0092   -0.0068    0.0024    0.0017 
-0.0006   -0.0003    0.0001    0.0000    0.0000    0.0000    0.0000 0.0000    0.0000
LO_R = -0.0002    0.0004    0.0022   -0.0042   -0.0101    0.0234    0.0282 -0.0919   -0.0520    0.4216    

0.7743    0.4380   -0.0620   -0.1056 0.0413    0.0327   -0.0198   -0.0092    0.0068    0.0024   -0.0017 
-0.0006    0.0003    0.0001    0.0000    0.0000    0.0000    0.0000 0.0000    0.0000
HI_R = 0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0001 -0.0003   -0.0006    0.0017    0.0024   

-0.0068   -0.0092    0.0198 0.0327   -0.0413   -0.1056    0.0620    0.4380   -0.7743    0.4216 0.0520   
-0.0919   -0.0282    0.0234    0.0101   -0.0042   -0.0022 0.0004    0.0002

'sym2'
LO_D = -0.1294    0.2241    0.8365    0.4830
HI_D = -0.4830    0.8365   -0.2241   -0.1294
LO_R = 0.4830    0.8365    0.2241   -0.1294
HI_R = -0.1294   -0.2241    0.8365   -0.4830

'sym4'
LO_D = -0.0758   -0.0296    0.4976    0.8037    0.2979   -0.0992   -0.0126 0.0322
HI_D = -0.0322   -0.0126    0.0992    0.2979   -0.8037    0.4976    0.0296 -0.0758
LO_R = 0.0322   -0.0126   -0.0992    0.2979    0.8037    0.4976   -0.0296 -0.0758
HI_R = -0.0758    0.0296    0.4976   -0.8037    0.2979    0.0992   -0.0126 -0.0322

'sym8'
LO_D = -0.0034   -0.0005    0.0317    0.0076   -0.1433   -0.0613    0.4814 0.7772    0.3644   -0.0519   
-0.0272    0.0491    0.0038   -0.0150 -0.0003    0.0019
HI_D = -0.0019   -0.0003    0.0150    0.0038   -0.0491   -0.0272    0.0519 0.3644   -0.7772    0.4814    

0.0613   -0.1433   -0.0076    0.0317 0.0005   -0.0034
LO_R = 0.0019   -0.0003   -0.0150    0.0038    0.0491   -0.0272   -0.0519 0.3644    0.7772    0.4814   
-0.0613   -0.1433    0.0076    0.0317 -0.0005   -0.0034 
HI_R = -0.0034    0.0005    0.0317   -0.0076   -0.1433    0.0613    0.4814 -0.7772    0.3644    0.0519   
-0.0272   -0.0491    0.0038    0.0150 -0.0003   -0.001
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